Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Predictive Analytics

You're reading from   Practical Predictive Analytics Analyse current and historical data to predict future trends using R, Spark, and more

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781785886188
Length 576 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
 Winters Winters
Author Profile Icon Winters
Winters
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Getting Started with Predictive Analytics 2. The Modeling Process FREE CHAPTER 3. Inputting and Exploring Data 4. Introduction to Regression Algorithms 5. Introduction to Decision Trees, Clustering, and SVM 6. Using Survival Analysis to Predict and Analyze Customer Churn 7. Using Market Basket Analysis as a Recommender Engine 8. Exploring Health Care Enrollment Data as a Time Series 9. Introduction to Spark Using R 10. Exploring Large Datasets Using Spark 11. Spark Machine Learning - Regression and Cluster Models 12. Spark Models – Rule-Based Learning

Logistic regression


A very popular use of GLM is via logistic regression. This is the type of regression to use when your target variable is a binary value, that is, it can only take on two values. These two binary values usually take the form:

  • Something occurred (binary value = 1)
  • Something did not occur (binary value = 0)

These two values typically vary according to the type of industry. Here are some examples of binary responses in different industries:

  • Marketing: Did the customer respond to a specific offer or not?
  • Health care: Was a specific drug effective in treating a condition or was it not?
  • Financial: Did a specific trading strategy lead to a profit or not?
  • Web tracking: Did a customer abandon a shopping cart at the checkout or not?

Virtually every industry will have problems which can be formulated in terms of binary outcomes. In fact, sometimes standard linear regression problems are often recast, so instead of predicting the specific values for the target value, the problem will be reformulated...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images