Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Natural Language Processing with TensorFlow

You're reading from   Natural Language Processing with TensorFlow Teach language to machines using Python's deep learning library

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788478311
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
 Saad Saad
Author Profile Icon Saad
Saad
 Ganegedara Ganegedara
Author Profile Icon Ganegedara
Ganegedara
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Natural Language Processing with TensorFlow
Contributors
Preface
1. Introduction to Natural Language Processing FREE CHAPTER 2. Understanding TensorFlow 3. Word2vec – Learning Word Embeddings 4. Advanced Word2vec 5. Sentence Classification with Convolutional Neural Networks 6. Recurrent Neural Networks 7. Long Short-Term Memory Networks 8. Applications of LSTM – Generating Text 9. Applications of LSTM – Image Caption Generation 10. Sequence-to-Sequence Learning – Neural Machine Translation 11. Current Trends and the Future of Natural Language Processing Mathematical Foundations and Advanced TensorFlow Index

Summary


In this chapter, we examined the performance difference between the skip-gram and CBOW algorithms. For the comparison, we used a popular two-dimensional visualization technique, t-SNE, which we also briefly introduced to you, touching on the fundamental intuition and mathematics behind the method.

Next, we introduced you to the several extensions to Word2vec algorithms that boost their performance, followed by several novel algorithms that were based on the skip-gram and CBOW algorithms. Structured skip-gram extends the skip-gram algorithm by preserving the position of the context word during optimization, allowing the algorithm to treat input-output based on the distance between them. The same extension can be applied to the CBOW algorithm, and this results in the continuous window algorithm.

Then we discussed GloVe—another word embedding learning technique. GloVe takes the current Word2vec algorithms a step further by incorporating global statistics into the optimization, thus increasing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images