Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning Essentials

You're reading from   Deep Learning Essentials Your hands-on guide to the fundamentals of deep learning and neural network modeling

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781785880360
Length 284 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
 Di Di
Author Profile Icon Di
Di
Jianing Wei Jianing Wei
Author Profile Icon Jianing Wei
Jianing Wei
Anurag Bhardwaj Anurag Bhardwaj
Author Profile Icon Anurag Bhardwaj
Anurag Bhardwaj
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
1. Why Deep Learning? FREE CHAPTER 2. Getting Yourself Ready for Deep Learning 3. Getting Started with Neural Networks 4. Deep Learning in Computer Vision 5. NLP - Vector Representation 6. Advanced Natural Language Processing 7. Multimodality 8. Deep Reinforcement Learning 9. Deep Learning Hacks 10. Deep Learning Trends 1. Other Books You May Enjoy Index

Fine-tuning


In many common practices, data is limited. Training a deep neural network such as ConvNet, which has millions of parameters on a small set of data, can lead to overfitting. To avoid such issues, a common practice is to leverage an existing deep neural network that was trained on a much larger dataset, such as ImageNet (1.2 million labeled images), and fine-tune it on the smaller dataset at hand, which is not drastically different; that is, to continue to train the existing network using this new and smaller dataset. As we have discussed, one of the advantages of deep learning networks is that the first few layers often represent more general patterns mined from the data. Fine-tuning essentially leverages the common knowledge learned from a large pool of data and applies it to a specific area/application. For example, the first few layers in ConvNet may capture universal features such as curves and edges, which are relevant and useful to most image-related problems.

When to use...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images