Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with R

You're reading from   Hands-On Ensemble Learning with R A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788624145
Length 376 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
 Tattar Tattar
Author Profile Icon Tattar
Tattar
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Hands-On Ensemble Learning with R
Contributors
Preface
1. Introduction to Ensemble Techniques FREE CHAPTER 2. Bootstrapping 3. Bagging 4. Random Forests 5. The Bare Bones Boosting Algorithms 6. Boosting Refinements 7. The General Ensemble Technique 8. Ensemble Diagnostics 9. Ensembling Regression Models 10. Ensembling Survival Models 11. Ensembling Time Series Models 12. What's Next?
Bibliography Index

Bootstrapping time series models*


An example of the time series data was seen in Chapter 1, Introduction to Ensemble Techniques, in the New Zealand Overseas dataset. See Chapter 10, Ensembling Survival Models, of Tattar et al. (2016). Time series is distinctive in that the observations are not stochastically independent of each other. For example, the maximum temperature of the day is very unlikely to be independent of the previous day's maximum temperature. However, we are likely to believe that the maximum temperature of a block of ten previous days is mostly independent of a ten-day block six months ago. Thus, the bootstrap method is modified to the block bootstrap method. The tsboot function from the boot package is useful to bootstrap time series data. The main structure of the tsboot function appears as follows:

tsboot(tseries, statistic, R, l = NULL, sim = "model",
       endcorr = TRUE, n.sim = NROW(tseries), orig.t = TRUE,
       ran.gen, ran.args = NULL, norm = TRUE, ...,
     ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images