Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with R

You're reading from   Hands-On Ensemble Learning with R A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788624145
Length 376 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
 Tattar Tattar
Author Profile Icon Tattar
Tattar
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Hands-On Ensemble Learning with R
Contributors
Preface
1. Introduction to Ensemble Techniques FREE CHAPTER 2. Bootstrapping 3. Bagging 4. Random Forests 5. The Bare Bones Boosting Algorithms 6. Boosting Refinements 7. The General Ensemble Technique 8. Ensemble Diagnostics 9. Ensembling Regression Models 10. Ensembling Survival Models 11. Ensembling Time Series Models 12. What's Next?
Bibliography Index

R package references


Prabhanjan Tattar (2015). ACSWR: A Companion Package for the Book "A

Course in Statistics with R". R package version 1.0.

https://CRAN.R-project.org/package=ACSWR

Alfaro, E., Gamez, M. Garcia, N.(2013). adabag: An R Package for

Classification with Boosting and Bagging. Journal of Statistical

Software, 54(2), 1-35. URL http://www.jstatsoft.org/v54/i02/.

Angelo Canty and Brian Ripley (2017). boot: Bootstrap R (S-Plus)

Functions. R package version 1.3-19.

John Fox and Sanford Weisberg (2011). An {R} Companion to Applied

Regression, Second Edition. Thousand Oaks CA: Sage. URL:

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion car

Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams,

Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton

Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew

Ziem, Luca Scrucca, Yuan Tang, Can Candan and Tyler Hunt. (2017).

caret: Classification and Regression Training. R package version

6.0-77. https://CRAN.R-project.org/package=caret

Zachary A. Deane-Mayer and Jared E. Knowles (2016). caretEnsemble:

Ensembles of Caret Models. R package version 2.0.0.

https://CRAN.R-project.org/package=caretEnsemble Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics

with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0 class

Marie Chavent, Vanessa Kuentz, Benoit Liquet and Jerome Saracco

(2017). ClustOfVar: Clustering of Variables. R package version 1.1.

https://CRAN.R-project.org/package=ClustOfVar David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel

and Friedrich Leisch (2017). e1071: Misc Functions of the Department

of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.

R package version 1.6-8. https://CRAN.R-project.org/package=e1071 Alboukadel Kassambara and Fabian Mundt (2017). factoextra: Extract

and Visualize the Results of Multivariate Data Analyses. R package

version 1.0.5. https://CRAN.R-project.org/package=factoextra

Sebastien Le, Julie Josse, Francois Husson (2008). FactoMineR: An R

Package for Multivariate Analysis. Journal of Statistical Software,

25(1), 1-18. 10.18637/jss.v025.i01

Alina Beygelzimer, Sham Kakadet, John Langford, Sunil Arya, David

Mount and Shengqiao Li (2013). FNN: Fast Nearest Neighbor Search

Algorithms and Applications. R package version 1.1.

https://CRAN.R-project.org/package=FNN

Hyndman RJ (2017). _forecast: Forecasting functions for time series

and linear models_. R package version 8.2, <URL:

http://pkg.robjhyndman.com/forecast>.

David Shaub and Peter Ellis (2018). forecastHybrid: Convenient

Functions for Ensemble Time Series Forecasts. R package version

2.0.10. https://CRAN.R-project.org/package=forecastHybrid

Greg Ridgeway with contributions from others (2017). gbm:

Generalized Boosted Regression Models. R package version 2.1.3.

https://CRAN.R-project.org/package=gbm

Vincent J Carey. Ported to R by Thomas Lumley and Brian Ripley. Note

that maintainers are not available to give advice on using a package

they did not author. (2015). gee: Generalized Estimation Equation

Solver. R package version 4.13-19.

https://CRAN.R-project.org/package=gee

The H2O.ai team (2017). h2o: R Interface for H2O. R package version

3.16.0.2. https://CRAN.R-project.org/package=h2o

Andrea Peters and Torsten Hothorn (2017). ipred: Improved

Predictors. R package version 0.9-6.

https://CRAN.R-project.org/package=ipred

Alexandros Karatzoglou, Alex Smola, Kurt Hornik, Achim Zeileis

(2004). kernlab - An S4 Package for Kernel Methods in R. Journal of

Statistical Software 11(9), 1-20. URL

http://www.jstatsoft.org/v11/i09/

Friedrich Leisch & Evgenia Dimitriadou (2010). mlbench: Machine

Learning Benchmark Problems. R package version 2.1-1.

Daniel J. Stekhoven (2013). missForest: Nonparametric Missing Value

Imputation using Random Forest. R package version 1.4.

Alan Genz, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch,

Fabian Scheipl, Torsten Hothorn (2017). mvtnorm: Multivariate Normal

and t Distributions. R package version 1.0-6. URL

http://CRAN.R-project.org/package=mvtnorm

Beck M (2016). _NeuralNetTools: Visualization and Analysis Tools for

Neural Networks_. R package version 1.5.0, <URL:

https://CRAN.R-project.org/package=NeuralNetTools>.

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics

with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0 nnet

Michael P. Fay, Pamela A. Shaw (2010). Exact and Asymptotic Weighted

Logrank Tests for Interval Censored Data: The interval R Package.

Journal of Statistical Software, 36(2), 1-34. URL

http://www.jstatsoft.org/v36/i02/. perm

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data

Analysis. Journal of Statistical Software, 40(1), 1-29. URL

http://www.jstatsoft.org/v40/i01/. plyr

Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti,

Frédérique Lisacek, Jean-Charles Sanchez and Markus Müller (2011).

pROC: an open-source package for R and S+ to analyze and compare ROC

curves. BMC Bioinformatics, 12, p. 77. DOI: 10.1186/1471-2105-12-77

http://www.biomedcentral.com/1471-2105/12/77/

Maja Pohar Perme and Mette Gerster (2017). pseudo: Computes

Pseudo-Observations for Modeling. R package version 1.4.3.

https://CRAN.R-project.org/package=pseudo

A. Liaw and M. Wiener (2002). Classification and Regression by

randomForest. R News 2(3), 18--22.

Aleksandra Paluszynska and Przemyslaw Biecek (2017).

randomForestExplainer: Explaining and Visualizing Random Forests in

Terms of Variable Importance. R package version 0.9.

https://CRAN.R-project.org/package=randomForestExplainer

Terry Therneau, Beth Atkinson and Brian Ripley (2017). rpart:

Recursive Partitioning and Regression Trees. R package version

4.1-11. https://CRAN.R-project.org/package=rpart

Prabhanjan Tattar (2013). RSADBE: Data related to the book "R

Statistical Application Development by Example". R package version

1.0. https://CRAN.R-project.org/package=RSADBE

Therneau T (2015). _A Package for Survival Analysis in S_. version

2.38, <URL: https://CRAN.R-project.org/package=survival>. survival

Terry M. Therneau and Patricia M. Grambsch (2000). _Modeling Survival

Data: Extending the Cox Model_. Springer, New York. ISBN

0-387-98784-3.

Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich and Yuan

Tang (2018). xgboost: Extreme Gradient Boosting. R package version

0.6.4.1. https://CRAN.R-project.org/package=xgboost

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images