Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Modern Big Data Processing with Hadoop

You're reading from   Modern Big Data Processing with Hadoop Expert techniques for architecting end-to-end big data solutions to get valuable insights

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781787122765
Length 394 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
 R Patil R Patil
Author Profile Icon R Patil
R Patil
 Shindgikar Shindgikar
Author Profile Icon Shindgikar
Shindgikar
 Kumar Kumar
Author Profile Icon Kumar
Kumar
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
1. Enterprise Data Architecture Principles 2. Hadoop Life Cycle Management FREE CHAPTER 3. Hadoop Design Consideration 4. Data Movement Techniques 5. Data Modeling in Hadoop 6. Designing Real-Time Streaming Data Pipelines 7. Large-Scale Data Processing Frameworks 8. Building Enterprise Search Platform 9. Designing Data Visualization Solutions 10. Developing Applications Using the Cloud 11. Production Hadoop Cluster Deployment Index

Apache HBase


We have just learned about Hive, which is a database where users can access data using SQL commands. But there are certain databases where users cannot use SQL commands. Those databases are known as NoSQL data stores. HBase is a NoSQL database. So, what is actually meant by NoSQL? NoSQL means not only SQL. In NoSQL data stores like HBase, the main features of RDBMS, such as validation and consistency, are relaxed. Also, another important difference between RDBMS or SQL databases and NoSQL databases is schema on write versus schema on read. In schema on write, the data is validated at the time of writing to the table, whereas schema on read supports validation of data at the time of reading it. In this way, NoSQL data stores support storage of huge data velocity due to the relaxation of basic data validation at the time of writing data. There are about 150 NoSQL data stores in the market today. Each of these NoSQL data stores has some unique features to offer. Some popular NoSQL...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images