Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Frank Kane's Taming Big Data with Apache Spark and Python

You're reading from   Frank Kane's Taming Big Data with Apache Spark and Python Real-world examples to help you analyze large datasets with Apache Spark

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781787287945
Length 296 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Frank Kane Frank Kane
Author Profile Icon Frank Kane
Frank Kane
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Title Page
Credits
About the Author
www.PacktPub.com
Customer Feedback
Preface
1. Getting Started with Spark FREE CHAPTER 2. Spark Basics and Spark Examples 3. Advanced Examples of Spark Programs 4. Running Spark on a Cluster 5. SparkSQL, DataFrames, and DataSets 6. Other Spark Technologies and Libraries 7. Where to Go From Here? – Learning More About Spark and Data Science

Summary


It is interesting how you can actually use these high-level APIs using SparkSQL to save on coding. For example, just look at this one line of code:

topMovieIDs = movieDataset.groupBy("movieID").count().orderBy("count", ascending=False).cache() 

Remember that to do the same thing earlier, we had to kind of jump through some hoops and create key/value RDDs, reduce the RDD, and do all sorts of things that weren't very intuitive. Using SparkSQL and DataSets, however, you can do these exercises in a much more intuitive manner. At the same time, you allow Spark the opportunity to represent its data more compactly and optimize those queries in a more efficient manner.

Again, DataFrames are the way of the future with Spark. If you do have the choice between using an RDD and a DataFrame to do the same problem, opt for a DataFrame. It is not only more efficient, but it will also give you more interoperability with more components within Spark going forward. So there you have it: Spark SQL DataFrames...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images