Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Predictive Analytics

You're reading from   Practical Predictive Analytics Analyse current and historical data to predict future trends using R, Spark, and more

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781785886188
Length 576 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
 Winters Winters
Author Profile Icon Winters
Winters
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Getting Started with Predictive Analytics 2. The Modeling Process FREE CHAPTER 3. Inputting and Exploring Data 4. Introduction to Regression Algorithms 5. Introduction to Decision Trees, Clustering, and SVM 6. Using Survival Analysis to Predict and Analyze Customer Churn 7. Using Market Basket Analysis as a Recommender Engine 8. Exploring Health Care Enrollment Data as a Time Series 9. Introduction to Spark Using R 10. Exploring Large Datasets Using Spark 11. Spark Machine Learning - Regression and Cluster Models 12. Spark Models – Rule-Based Learning

Performing some automated forecasting using the ets function


So far, we have looked at ways in which we can explore any linear trends which may be inherent in our data. That provided a solid foundation for the next step, prediction. Now we will begin to look at how we can perform some actual forecasting.

Converting the dataframe to a time series object

As a preparation step, we will use the ts function to convert our dataframe to a time series object. It is important that the time series be equally spaced before converting to a ts object. At a minimum, you supply the time series variable, and start and end dates as arguments to the ts function.

After creating a new object, x, run a str() function to verify that all of the 14 time series from 1999 to 2012 have been created:

# only extract the 'ALL' timeseries
x <- ts(x2$Not.Covered.Pct[1:14], start = c(1999), end = c(2012), frequency = 1)

str(x) 
>  Time-Series [1:14] from 1999 to 2012: 0.154 0.157 0.163 0c.161 0.149 ... 
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images