Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Automated Machine Learning

You're reading from   Hands-On Automated Machine Learning A beginner's guide to building automated machine learning systems using AutoML and Python

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788629898
Length 282 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
 Das Das
Author Profile Icon Das
Das
 Mert Cakmak Mert Cakmak
Author Profile Icon Mert Cakmak
Mert Cakmak
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
1. Introduction to AutoML FREE CHAPTER 2. Introduction to Machine Learning Using Python 3. Data Preprocessing 4. Automated Algorithm Selection 5. Hyperparameter Optimization 6. Creating AutoML Pipelines 7. Dive into Deep Learning 8. Critical Aspects of ML and Data Science Projects 1. Other Books You May Enjoy Index

Logistic regression


Let's start again with the triple W for logistics regression. To reiterate the tripe W method, we first ask the algorithm what it is, followed by where it can be used, and finally by what method we can implement the model.

What is logistic regression?

Logistic regression can be thought of as an extension to linear regression algorithms. It fundamentally works like linear regression, but it is meant for discrete or categorical outcomes.

Where is logistic regression used?

Logistic regression is applied in the case of discrete target variables such as binary responses. In such scenarios, some of the assumptions of linear regression, such as target attribute and features, don't follow a linear relationship, the residuals might not be normally distributed, or the error terms are heteroscedastic. In logistic regression, the target is reconstructed to the log of its odds ratio to fit the regression equation, as shown here:

The odds ratio reflects the probability or likelihood of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images