Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Automated Machine Learning

You're reading from   Hands-On Automated Machine Learning A beginner's guide to building automated machine learning systems using AutoML and Python

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788629898
Length 282 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
 Das Das
Author Profile Icon Das
Das
 Mert Cakmak Mert Cakmak
Author Profile Icon Mert Cakmak
Mert Cakmak
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
1. Introduction to AutoML FREE CHAPTER 2. Introduction to Machine Learning Using Python 3. Data Preprocessing 4. Automated Algorithm Selection 5. Hyperparameter Optimization 6. Creating AutoML Pipelines 7. Dive into Deep Learning 8. Critical Aspects of ML and Data Science Projects 1. Other Books You May Enjoy Index

Chapter 3. Data Preprocessing

Anyone who is interested in machine learning (ML) would have certainly heard that 80% of a data scientist or machine learning engineer's time is spent on preparing the data, and the remaining 20% is spent on building and evaluating the model. The considerable time spent preparing the data is considered as an investment to construct a good model. A simple model this is made using an excellent dataset outpaces a complex model developed using a lousy dataset. In real life, finding a reliable dataset is very difficult. We have to create and nurture good data. You must be wondering, how do you create good data? This is something that we will discover in this chapter. We will study everything that is needed to create an excellent and viable dataset. In theory, good is relative to what task we have at hand and how we perceive and consume the data. In this chapter, we will walk you through the following topics:

  • Data transformation
  • Feature selection
  • Dimensionality reduction...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images