Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Principles of Data Science

You're reading from   Principles of Data Science Mathematical techniques and theory to succeed in data-driven industries

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781785887918
Length 388 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (20) Chapters Close

Principles of Data Science
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. How to Sound Like a Data Scientist FREE CHAPTER 2. Types of Data 3. The Five Steps of Data Science 4. Basic Mathematics 5. Impossible or Improbable – A Gentle Introduction to Probability 6. Advanced Probability 7. Basic Statistics 8. Advanced Statistics 9. Communicating Data 10. How to Tell If Your Toaster Is Learning – Machine Learning Essentials 11. Predictions Don't Grow on Trees – or Do They? 12. Beyond the Essentials 13. Case Studies Index

Summary


Probability as a field works to explain our random and chaotic world. Using the basic laws of probability, we can model real-life events that involve randomness. We can use random variables to represent values that may take on several values, and we can use the probability mass or density functions to compare product lines or look at the test results.

We have seen some of the more complicated uses of probability in prediction. Using random variables and Bayes theorem are excellent ways to assign probabilities to real-life situations. In the later chapters, we will revisit Bayes theorem and use it to create a very powerful and fast machine learning algorithm, called Naïve Bayes algorithm. This algorithm captures the power of Bayesian thinking and applies it directly to the problem of predictive learning.

The next two chapters are focused on statistical thinking. Like probability, these chapters will use mathematical formulas to model real-world events. The main difference, however,...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images