A/B test gotchas
An important point I want to make is that the results of an A/B test, even when you measure them in a principled manner using p-values, is not gospel. There are many effects that can actually skew the results of your experiment and cause you to make the wrong decision. Let's go through a few of these and let you know how to watch out for them. Let's talk about some gotchas with A/B tests.
It sounds really official to say there's a p-value of 1 percent, meaning there's only a 1 percent chance that a given experiment was due to spurious results or random variation, but it's still not the be-all and end-all of measuring success for an experiment. There are many things that can skew or conflate your results that you need to be aware of. So, even if you see a p-value that looks very encouraging, your experiment could still be lying to you, and you need to understand the things that can make that happen so you don't make the wrong decisions.
Note
Remember, correlation does not imply...