An example system
In this section, you will write a wrapper function to optimize the XGBoost algorithm hyperparameters to improve performance on the Breast Cancer Wisconsin
dataset:
# Importing necessary libraries import numpy as np from xgboost import XGBClassifier from sklearn import datasets from sklearn.model_selection import cross_val_score # Importing ConfigSpace and different types of parameters from smac.configspace import ConfigurationSpace from ConfigSpace.hyperparameters import CategoricalHyperparameter, \ UniformFloatHyperparameter, UniformIntegerHyperparameter from ConfigSpace.conditions import InCondition # Import SMAC-utilities from smac.tae.execute_func import ExecuteTAFuncDict from smac.scenario.scenario import Scenario from smac.facade.smac_facade import SMAC # Creating configuration space. # Configuration space will hold all of your hyperparameters cs = ConfigurationSpace() # Defining hyperparameters and range of values that they can take learning_rate = UniformFloatHyperparameter...