Sentiment analysis – model implementation
We have seen all the bits and pieces of how to implement a stacked version of the LSTM variation of RNNs. To make things a bit exciting, we are going to use a higher level API called Keras
.
Keras
"Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research." – Keras website
So, Keras is just a wrapper around TensorFlow and other deep learning frameworks. It's really good for prototyping and getting things built very quickly, but on the other hand, it gives you less control over your code. We'll take a chance to implement this sentiment analysis model in Keras so that you get a hands-on implementation in both TensorFlow and Keras. You can use Keras for fast prototyping and TensorFlow for a production-ready system.
More interesting...