Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Intelligent Mobile Projects with TensorFlow

You're reading from   Intelligent Mobile Projects with TensorFlow Build 10+ Artificial Intelligence apps using TensorFlow Mobile and Lite for iOS, Android, and Raspberry Pi

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788834544
Length 404 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
 Tang Tang
Author Profile Icon Tang
Tang
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Title Page
Copyright and Credits
Dedication
Packt Upsell
Foreword
Contributors
Preface
1. Getting Started with Mobile TensorFlow 2. Classifying Images with Transfer Learning FREE CHAPTER 3. Detecting Objects and Their Locations 4. Transforming Pictures with Amazing Art Styles 5. Understanding Simple Speech Commands 6. Describing Images in Natural Language 7. Recognizing Drawing with CNN and LSTM 8. Predicting Stock Price with RNN 9. Generating and Enhancing Images with GAN 10. Building an AlphaZero-like Mobile Game App 11. Using TensorFlow Lite and Core ML on Mobile 12. Developing TensorFlow Apps on Raspberry Pi 1. Other Books You May Enjoy Index

Object detection–a quick overview


Since the breakthrough in neural network in 2012, when a deep CNN model called AlexNet won the annual ImageNet visual recognition challenge by dramatically reducing the error rate, many researchers in computer vision and natural language processing have started to take advantage of the power of deep learning models. Modern deep-learning-based object detections are all based on CNN and built on top of pre-trained models such as AlexNet, Google Inception, or another popular net VGG. These CNNs typically have trained millions of parameters and can convert an input image to a set of features that can be further used for tasks such as image classification, which we covered in the previous chapter, and object detection, among other computer-vision-related tasks.

In 2014, a state-of-the-art object detector that retrained AlexNet with a labeled object detection dataset, called RCNN (Regions with CNN features), was proposed, and it offered a big improvement in accuracy...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images