Most real-world machine learning problems use supervised learning. In supervised learning, the model will learn from a labeled training dataset. A label is a target variable that we want to predict. It is an extra piece of information that helps in making decisions or predictions, for example, which loan application is safe or risky, whether a patient suffers from a disease or not, house prices, and credit eligibility scores. These labels act as a supervisor or teacher for the learning process. Supervised learning algorithms can be of two types: classification or regression. A classification problem has a categorical target variable, such as a loan application status as safe or risky, whether a patient suffers from a "disease" or "not disease," or whether a customer is "potential" or "not...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
South Africa
Thailand
Ukraine
Switzerland
Slovakia
Luxembourg
Hungary
Romania
Denmark
Ireland
Estonia
Belgium
Italy
Finland
Cyprus
Lithuania
Latvia
Malta
Netherlands
Portugal
Slovenia
Sweden
Argentina
Colombia
Ecuador
Indonesia
Mexico
New Zealand
Norway
South Korea
Taiwan
Turkey
Czechia
Austria
Greece
Isle of Man
Bulgaria
Japan
Philippines
Poland
Singapore
Egypt
Chile
Malaysia