Support vector regression
We will capitalize on the SVM classification recipes by performing support vector regression on scikit-learn's diabetes dataset.
Getting ready
Load the diabetes dataset:
#load the libraries we have been using import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target
Split the data in training and testing sets. There is no stratification for regression in this case:
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
How to do it...
- Create a
OneVsRestClassifier
within a pipeline and support vector regression (SVR) fromsklearn.svm
:
from sklearn.svm import SVR from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.multiclass import OneVsRestClassifier svm_est = Pipeline([('scaler',StandardScaler()),('svc',OneVsRestClassifier...