Doing dimensionality reduction with manifolds – t-SNE
Getting ready
This is a short and practical recipe.
If you read the rest of the chapter, we have been doing a lot of dimensionality reduction with the iris dataset. Let's continue the pattern for additional easy comparisons. Load the iris dataset:
from sklearn.datasets import load_iris iris = load_iris() iris_X = iris.data y = iris.target
Load PCA
and some classes from the manifold
module:
from sklearn.decomposition import PCA from sklearn.manifold import TSNE, MDS, Isomap #Load visualization library import matplotlib.pyplot as plt %matplotlib inline
How to do it...
- Run all the transforms on
iris_X
. One of the transforms is t-SNE:
iris_pca = PCA(n_components = 2).fit_transform(iris_X) iris_tsne = TSNE(learning_rate=200).fit_transform(iris_X) iris_MDS = MDS(n_components = 2).fit_transform(iris_X) iris_ISO = Isomap(n_components = 2).fit_transform(iris_X)
- Plot the results:
plt.figure(figsize=(20, 10)) plt.subplot(221) plt.title('PCA') plt.scatter...