Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
 R. Nicolas R. Nicolas
Author Profile Icon R. Nicolas
R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Scala for Machine Learning
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started FREE CHAPTER 2. Hello World! 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks Basic Concepts Index

Comparing CRF and HMM


The cost/benefit analysis of discriminative models relative to generative models applies to the comparison of the conditional random field with the hidden Markov model.

Contrary to the hidden Markov model, the conditional random field does not require the observations to be independent (conditional probability). The conditional random field can be regarded as a generalization of the HMM by extending the transition probabilities to arbitrary feature functions that can depend on the input sequence. The HMM assumes the transition probabilities matrix to be constant.

The HMM learns the transition probabilities aij on its own by processing more training data. The HMM can be regarded as a special case of CRF where the probabilities used in the state transition are constant.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images