Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Deep Learning Essentials

You're reading from   R Deep Learning Essentials A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781788992893
Length 378 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
 Hodnett Hodnett
Author Profile Icon Hodnett
Hodnett
 Wiley Wiley
Author Profile Icon Wiley
Wiley
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Packt Upsell
Contributors
Preface
1. Getting Started with Deep Learning FREE CHAPTER 2. Training a Prediction Model 3. Deep Learning Fundamentals 4. Training Deep Prediction Models 5. Image Classification Using Convolutional Neural Networks 6. Tuning and Optimizing Models 7. Natural Language Processing Using Deep Learning 8. Deep Learning Models Using TensorFlow in R 9. Anomaly Detection and Recommendation Systems 10. Running Deep Learning Models in the Cloud 11. The Next Level in Deep Learning 1. Other Books You May Enjoy Index

Summary


In this chapter, the reader has seen some advanced deep learning techniques. First, we looked at some image classification models and looked at some historical models. Next, we loaded an existing model with pre-trained weights into R and used it to classify a new image. We looked at transfer learning, which allows us to reuse an existing model as a base on which to build a deep learning model for new data. We built an image classifier model that could train on image files. This model also showed us how to use data augmentation and callbacks, which are used in many deep learning models. Finally, we demonstrated how we can build a model in R and create a REST endpoint for a prediction API that can be used from other applications or across the web.

We have come to the end of the book, and I really hope it was useful to you. R is a great language for data science and I believe it is easier to use and allows you to develop machine learning prototypes faster than the main alternative, Python...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images