As we stated in the Visualizing the MNIST dataset using PCA and t-SNE recipe of Chapter 14, Unsupervised Representation Learning, in the case of datasets of important dimensions, the data was transformed into a reduced series of representation functions. This process of transforming the input data into a set of functionalities is named feature extraction. This is because the extraction of the characteristics proceeds from an initial series of measured data and produces derived values that can keep the information contained in the original dataset, but excluded from the redundant data. In the case of images, feature extraction is aimed at obtaining information that can be identified by a computer.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
South Africa
Thailand
Ukraine
Switzerland
Slovakia
Luxembourg
Hungary
Romania
Denmark
Ireland
Estonia
Belgium
Italy
Finland
Cyprus
Lithuania
Latvia
Malta
Netherlands
Portugal
Slovenia
Sweden
Argentina
Colombia
Ecuador
Indonesia
Mexico
New Zealand
Norway
South Korea
Taiwan
Turkey
Czechia
Austria
Greece
Isle of Man
Bulgaria
Japan
Philippines
Poland
Singapore
Egypt
Chile
Malaysia