Before we talk about agglomerative clustering, we need to understand hierarchical clustering. Hierarchical clustering refers to a set of clustering algorithms that creates tree-like clusters by consecutively splitting or merging them, and they are represented using a tree. Hierarchical clustering algorithms can be either bottom-up or top-down. Now, what does this mean? In bottom-up algorithms, each datapoint is treated as a separate cluster with a single object. These clusters are then successively merged until all the clusters are merged into a single giant cluster. This is called agglomerative clustering. On the other hand, top-down algorithms start with a giant cluster and successively split these clusters until individual datapoints are reached.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
South Africa
Thailand
Ukraine
Switzerland
Slovakia
Luxembourg
Hungary
Romania
Denmark
Ireland
Estonia
Belgium
Italy
Finland
Cyprus
Lithuania
Latvia
Malta
Netherlands
Portugal
Slovenia
Sweden
Argentina
Colombia
Ecuador
Indonesia
Mexico
New Zealand
Norway
South Korea
Taiwan
Turkey
Czechia
Austria
Greece
Isle of Man
Bulgaria
Japan
Philippines
Poland
Singapore
Egypt
Chile
Malaysia