Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Practical Deep Learning at Scale with MLflow
Practical Deep Learning at Scale with MLflow

Practical Deep Learning at Scale with MLflow: Bridge the gap between offline experimentation and online production

Arrow left icon
Profile Icon Yong Liu
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7 (10 Ratings)
Paperback Jul 2022 288 pages 1st Edition
eBook
$37.99
Paperback
$46.99
Subscription
Free Trial
Renews at $12.99p/m
Arrow left icon
Profile Icon Yong Liu
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7 (10 Ratings)
Paperback Jul 2022 288 pages 1st Edition
eBook
$37.99
Paperback
$46.99
Subscription
Free Trial
Renews at $12.99p/m
eBook
$37.99
Paperback
$46.99
Subscription
Free Trial
Renews at $12.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Key benefits

  • Focus on deep learning models and MLflow to develop practical business AI solutions at scale
  • Ship deep learning pipelines from experimentation to production with provenance tracking
  • Learn to train, run, tune and deploy deep learning pipelines with explainability and reproducibility

Description

The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas. From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You’ll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you’ll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox. By the end of this book, you’ll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.

Who is this book for?

This book is for machine learning practitioners including data scientists, data engineers, ML engineers, and scientists who want to build scalable full life cycle deep learning pipelines with reproducibility and provenance tracking using MLflow. A basic understanding of data science and machine learning is necessary to grasp the concepts presented in this book.

What you will learn

  • Understand MLOps and deep learning life cycle development
  • Track deep learning models, code, data, parameters, and metrics
  • Build, deploy, and run deep learning model pipelines anywhere
  • Run hyperparameter optimization at scale to tune deep learning models
  • Build production-grade multi-step deep learning inference pipelines
  • Implement scalable deep learning explainability as a service
  • Deploy deep learning batch and streaming inference services
  • Ship practical NLP solutions from experimentation to production

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 08, 2022
Length: 288 pages
Edition : 1st
Language : English
ISBN-13 : 9781803241333
Category :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jul 08, 2022
Length: 288 pages
Edition : 1st
Language : English
ISBN-13 : 9781803241333
Category :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$12.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$129.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$179.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 142.97
Practical Deep Learning at Scale with MLflow
$46.99
Production-Ready Applied Deep Learning
$51.99
Machine Learning Engineering with MLflow
$43.99
Total $ 142.97 Stars icon
Visually different images

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7
(10 Ratings)
5 star 70%
4 star 30%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




MYLiang Jul 08, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book gives a good introduction to the full life cycle of deep learning development using MLflow. It's easy to read, and also very practical with all the code provided. The book illustrates the challenges in every step of developing and productionizing a deep learning model, and how you can deal with these challenges with MLflow, at scale and with better explainability. Recommended for everyone who works with data and want a better management of your models or projects with MLflow. You'll benefit from and be inspired by different sections of this book.
Amazon Verified review Amazon
Andrew J. Brooks Jul 25, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The beauty of this work is that it threads together the most important concepts facing ML practitioners today AND actionable recommendations for tooling from the modern tech stack AND working code. There are tutorials and blog posts out there that touch on bits and pieces of these, but they are fragmented with many holes in between. The in-depth guide provided within this work connects the intuition and full ML lifecycle to these concepts in a way that the field desperately needs.Having worked directly with Yong for several years on many of these topics, I can attest that this book is not just a tome of facts and tutorials, but a trove of wisdom developed through years of experience and experimentation. For example, even seasoned ML Practitioners will likely find new insights and patterns in Chapter 7 for how to elegantly connect model and business and pre/post-processing logic that is often disjointed. Or the landscape of options and considerations for serving MLFlow models in Chapter 8. The techniques covered in this text are highly practical for anyone shipping industry-grade ML, but rarely covered with this much depth (or at all) elsewhere on the web.
Amazon Verified review Amazon
QAM Chen Jul 09, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Databricks with mlflow server is a very well setup environment for MLOps. The book gives you all knowledge you need for model building and MLOps. You can use it for traditional ML training or NLP transfer learning model building. I learned a lot from the book especially model deployment and model hyper-params tune.Overall: Reading the book and you can learn ML lifecycle with databricks and MLflow which is very important for model to production.
Amazon Verified review Amazon
Chelsea Zhu Jul 19, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
MLOps is an emerging field of ML which aims to deploy and maintain machine learning models reliably and efficiently. Industries realize the importance of it, but the resource in this area is scarce and knowledge is scattered. This book covers the most important areas of MLOps with examples of deep learning models using MLFlow - ML pipelines, model explainability, model experimentation, and tracking, code and data versioning, model deployment etc. The author did an excellent job to combine all important knowledge of MLOps in a structural and practical way. Even for a veteran in ML area, you still can learn a lot from this book. Highly recommend it to everyone who is going to build ML systems and wants to follow the best practice in MLOps.
Amazon Verified review Amazon
Yongguo Mei Jul 15, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book covers every stages of deep learning model development from feature data preparation, model training, to deployment, and explainability. The author has near 20 years industrial experience from multiple companies. You can follow through the code examples in each chapter and learn each topic conveniently as MLflow is a popular ML platform. This book is relatively short, but provides a rich set of real world ML problems and solutions. Whether you are new to this area or an expert ML scientist, you can benefit from reading this book.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.