Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Network Science with Python and NetworkX Quick Start Guide

You're reading from   Network Science with Python and NetworkX Quick Start Guide Explore and visualize network data effectively

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789955316
Length 190 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
 Platt Platt
Author Profile Icon Platt
Platt
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Title Page
Copyright and Credits
Dedication
About Packt Contributors Preface 1. What is a Network? FREE CHAPTER 2. Working with Networks in NetworkX 3. From Data to Networks 4. Affiliation Networks 5. The Small Scale - Nodes and Centrality 6. The Big Picture - Describing Networks 7. In-Between - Communities 8. Social Networks and Going Viral 9. Simulation and Analysis 10. Networks in Space and Time 11. Visualization 12. Conclusion 1. Appendix 2. Other Books You May Enjoy

Appendix

The branch of mathematics studying networks is called graph theory. Graph and network are more or less two words for the same thing, but mathematicians can be picky about exact definitions. A graph is composed of two parts: a set of things called vertices and a set of edges representing connections between those vertices.

What is a vertex? It's a mathematical object whose sole purpose is to be connected to other vertices. In other words, it's pretty much the same thing as a node. In order to tell vertices apart, it is necessary to give them some kind of label. These labels could be anything, but let's call them v1, v2, and so on. It's a common convention to call a set of vertices V. Mathematically, this can be written using the following set notation, where N is the number of vertices in V:

V = {v1, v2, ..., vN},

Connections between vertices are called edges, just as in NetworkX. For undirected graphs, an edge is a set of two vertices. Elements in a set don't have a particular order, so {v1, v2} is the same as {v2, v1}, which makes sets good for undirected graphs. For directed graphs, order matters, so an edge is represented by an ordered pair of vertices. For example, (v1, v2) and (v2, v1) represent edges pointing in opposite directions. A set of edges is typically called E. Weighted edges can be represented in many ways, but one of the most practical is using a mathematical object called a matrix.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images