Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Tableau

You're reading from   Mastering Tableau Smart Business Intelligence techniques to get maximum insights from your data

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781784397692
Length 476 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Jen Stirrup Jen Stirrup
Author Profile Icon Jen Stirrup
Jen Stirrup
 Baldwin Baldwin
Author Profile Icon Baldwin
Baldwin
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Mastering Tableau
Credits
About the Author
www.Packtpub.com
Preface
1. Getting Up to Speed – a Review of the Basics 2. All about Data – Getting Your Data Ready FREE CHAPTER 3. All about Data – Joins, Blends, and Data Structures 4. All about Data – Data Densification, Cubes, and Big Data 5. Table Calculations 6. Level of Detail Calculations 7. Beyond the Basic Chart Types 8. Mapping 9. Tableau for Presentations 10. Visualization Best Practices and Dashboard Design 11. Improving Performance 12. Interacting with Tableau Server 13. R Integration

Summary


We began this chapter with a discussion on complex joins and discovered that when possible, Tableau uses join culling to generate efficient queries of the data source. A secondary join, however, limits Tableau's ability to employ join culling. An extract results in a materialized, flattened view, which eliminates the need for joins to be included in any queries.

Next we reviewed data blending to clearly understand how data blending differs from joining. We discovered that the primary limitation in data blending is that no dimensions are allowed from a secondary source; however, we also discovered that there are exceptions to this rule. We also discussed scaffolding, which can make data blending surprisingly fruitful.

Finally, we discussed data structures and learned how pivoting can make difficult or seemingly impossible visualizations easy.

Having completed our second data-centric discussion, we will continue with another chapter that also includes All about Data in the title. Specifically...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images