Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Linux Kernel Development

You're reading from   Mastering Linux Kernel Development A kernel developer's reference manual

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781785883057
Length 354 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
CH Raghav Maruthi CH Raghav Maruthi
Author Profile Icon CH Raghav Maruthi
CH Raghav Maruthi
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Comprehending Processes, Address Space, and Threads FREE CHAPTER 2. Deciphering the Process Scheduler 3. Signal Management 4. Memory Management and Allocators 5. Filesystems and File I/O 6. Interprocess Communication 7. Virtual Memory Management 8. Kernel Synchronization and Locking 9. Interrupts and Deferred Work 10. Clock and Time Management 11. Module Management Index

Process preemption


Understanding preemption and context switching is key to fully comprehending scheduling and the impact it has on the kernel in maintaining low latency and consistency. Every process must be preempted either implicitly or explicitly to make way for another process. Preemption might lead to context switching, which requires a low-level architecture-specific operation, carried out by the function context_switch(). There are two primary tasks that need to be done for a processor to switch its context: switch the virtual memory mapping of the old process with the new one, and switch the processor state from that of the old process to the new one. These two tasks are carried out by switch_mm() and switch_to().

Preemption can happen for any of the following reasons:

When a high-priority process becomes runnable. For this, the scheduler will have to periodically check for a high-priority runnable thread. On return from interrupts and system calls, TIF_NEED_RESCHEDULE(kernel-provided...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images