Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering C++ Multithreading

You're reading from   Mastering C++ Multithreading Write robust, concurrent, and parallel applications

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787121706
Length 244 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Maya Posch Maya Posch
Author Profile Icon Maya Posch
Maya Posch
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Revisiting Multithreading FREE CHAPTER 2. Multithreading Implementation on the Processor and OS 3. C++ Multithreading APIs 4. Thread Synchronization and Communication 5. Native C++ Threads and Primitives 6. Debugging Multithreaded Code 7. Best Practices 8. Atomic Operations - Working with the Hardware 9. Multithreading with Distributed Computing 10. Multithreading with GPGPU

Mutual exclusion implementations


Mutual exclusion is the principle which underlies thread-safe access of data within a multithreaded application. One can implement this both in hardware and software. The mutual exclusion (mutex) is the most elementary form of this functionality in most implementations.

Hardware

The simplest hardware-based implementation on a uniprocessor (single processor core), non-SMT system is to disable interrupts, and thus, prevent the task from being changed. More commonly, a so-called busy-wait principle is employed. This is the basic principle behind a mutex--due to how the processor fetches data, only one task can obtain and read/write an atomic value in the shared memory, meaning, a variable sized the same (or smaller) as the CPU's registers. This is further detailed in Chapter 8, Atomic Operations - Working with the Hardware.

When our code tries to lock a mutex, what this does is read the value of such an atomic section of memory, and try to set it to its locked...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images