Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Machine Learning Techniques for Text
Machine Learning Techniques for Text

Machine Learning Techniques for Text: Apply modern techniques with Python for text processing, dimensionality reduction, classification, and evaluation

Arrow left icon
Profile Icon Nikos Tsourakis
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8 (6 Ratings)
Paperback Oct 2022 448 pages 1st Edition
eBook
$37.99
Paperback
$46.99
Subscription
Free Trial
Renews at $12.99p/m
Arrow left icon
Profile Icon Nikos Tsourakis
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8 (6 Ratings)
Paperback Oct 2022 448 pages 1st Edition
eBook
$37.99
Paperback
$46.99
Subscription
Free Trial
Renews at $12.99p/m
eBook
$37.99
Paperback
$46.99
Subscription
Free Trial
Renews at $12.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Key benefits

  • Learn how to acquire and process textual data and visualize the key findings
  • Obtain deeper insight into the most commonly used algorithms and techniques and understand their tradeoffs
  • Implement models for solving real-world problems and evaluate their performance

Description

With the ever-increasing demand for machine learning and programming professionals, it's prime time to invest in the field. This book will help you in this endeavor, focusing specifically on text data and human language by steering a middle path among the various textbooks that present complicated theoretical concepts or focus disproportionately on Python code. A good metaphor this work builds upon is the relationship between an experienced craftsperson and their trainee. Based on the current problem, the former picks a tool from the toolbox, explains its utility, and puts it into action. This approach will help you to identify at least one practical use for each method or technique presented. The content unfolds in ten chapters, each discussing one specific case study. For this reason, the book is solution-oriented. It's accompanied by Python code in the form of Jupyter notebooks to help you obtain hands-on experience. A recurring pattern in the chapters of this book is helping you get some intuition on the data and then implement and contrast various solutions. By the end of this book, you'll be able to understand and apply various techniques with Python for text preprocessing, text representation, dimensionality reduction, machine learning, language modeling, visualization, and evaluation.

Who is this book for?

This book is for professionals in the area of computer science, programming, data science, informatics, business analytics, statistics, language technology, and more who aim for a gentle career shift in machine learning for text. Students in relevant disciplines that seek a textbook in the field will benefit from the practical aspects of the content and how the theory is presented. Finally, professors teaching a similar course will be able to pick pertinent topics in terms of content and difficulty. Beginner-level knowledge of Python programming is needed to get started with this book.

What you will learn

  • Understand fundamental concepts of machine learning for text
  • Discover how text data can be represented and build language models
  • Perform exploratory data analysis on text corpora
  • Use text preprocessing techniques and understand their trade-offs
  • Apply dimensionality reduction for visualization and classification
  • Incorporate and fine-tune algorithms and models for machine learning
  • Evaluate the performance of the implemented systems
  • Know the tools for retrieving text data and visualizing the machine learning workflow

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 31, 2022
Length: 448 pages
Edition : 1st
Language : English
ISBN-13 : 9781803242385
Category :
Languages :

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Oct 31, 2022
Length: 448 pages
Edition : 1st
Language : English
ISBN-13 : 9781803242385
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$12.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$129.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$179.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 191.97
Machine Learning with PyTorch and Scikit-Learn
$54.99
Transformers for Natural Language Processing
$89.99
Machine Learning Techniques for Text
$46.99
Total $ 191.97 Stars icon
Visually different images

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8
(6 Ratings)
5 star 83.3%
4 star 16.7%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Steven Fernandes Jan 08, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book explains machine learning for text, detecting spam emails, classifying topics of newsgroup posts, extracting sentiments from product reviews, and recommending music titles.It helps the user understand teaching machines to translate and summarize Wikipedia articles, detect hateful and offensive language, generate text in chatbots, and cluster speech-to-text transcriptions.The Python code given in the book is posted in the GitHub link.
Amazon Verified review Amazon
Revell B. Jan 13, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Machine Learning Techniques for Text is an in-depth guide to using modern machine learning techniques for text processing, dimensionality reduction, classification, and evaluation. The book is written for readers who are familiar with Python and have a basic understanding of machine-learning concepts. The author does a great job of introducing the reader to the different techniques used for text processing and how they can be applied using Python. The book covers a variety of techniques, from traditional methods like bag-of-words and TF-IDF to more advanced techniques such as word embeddings and deep learning. The explanations are clear and easy to follow, with plenty of code examples to help illustrate the concepts. The book also includes practical examples and case studies that demonstrate how the techniques can be applied in real-world scenarios. Overall, I would highly recommend this book to anyone interested in text processing and machine learning.
Amazon Verified review Amazon
GK Dec 22, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book provides a nice overview of methods for text processing and mining. It is written in a clear and engaging manner, containing many helpful figures and diagrams. It will feel accessible even to those who do not know much about these topics, and provides a nice overview of the various applications.
Amazon Verified review Amazon
Yiqiao Yin Dec 11, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Machine learning techniques for text involve the use of algorithms and statistical models to process and analyze natural language data. These techniques can be used for a variety of tasks, such as sentiment analysis, document classification, and language translation. Some common machine learning algorithms that are used for text data include support vector machines, decision trees, and neural networks. These algorithms can be trained on large amounts of labeled text data, and can then be used to make predictions or classify new, unseen text data.✅Learn how to acquire and process textual data and visualize the key findings✅Obtain deeper insight into the most commonly used algorithms and techniques and understand their tradeoffs✅Implement models for solving real-world problems and evaluate their performance
Amazon Verified review Amazon
Kyle Gallatin Jan 26, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book strikes a unique balance that many books in this genre struggle to achieve. It provides just enough math, theory and linguistics to give readers a peek "under the hood" of applied machine learning techniques for text, but always pulls away at the right moment with very aesthetically pleasing diagrams and easy-to-follow, hands-on code samples. As a result, this book is both a pleasure to read or use to get started in your latest NLP project.Structuring each chapter around a specific use case also helps frame the reader for the purpose of the topics they'll learn in each chapter and the theory behind their application. Those new to NLP will appreciate the slow build from tokenizing text to generating it with GPT2 - and those already familiar with the field will find an array of well-written examples and theoretically sound writing that help reinforce concepts you likely don't know as well as the author.Though the writing is a bit superfluous at times (I should know lol) this is one of the better-written books I've read as of late. Visual learners will love the diagrams, cognitive learners will love the text, and kinesthetic learners will love the examples.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.