Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Penetration Testing with Python

You're reading from   Learning Penetration Testing with Python Utilize Python scripting to execute effective and efficient penetration tests

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher
ISBN-13 9781785282324
Length 314 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Christopher Duffy Christopher Duffy
Author Profile Icon Christopher Duffy
Christopher Duffy
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Learning Penetration Testing with Python
Credits
Disclaimer
About the Author
Acknowlegements
About the Reviewers
www.PacktPub.com
Preface
1. Understanding the Penetration Testing Methodology FREE CHAPTER 2. The Basics of Python Scripting 3. Identifying Targets with Nmap, Scapy, and Python 4. Executing Credential Attacks with Python 5. Exploiting Services with Python 6. Assessing Web Applications with Python 7. Cracking the Perimeter with Python 8. Exploit Development with Python, Metasploit, and Immunity 9. Automating Reports and Tasks with Python 10. Adding Permanency to Python Tools Index

Understanding memory addresses and endianness


When looking at the memory, the data is represented in hexadecimal characters 0 - F, each of which represents a value of 0 - 15. For example, the value 0 in hexadecimal would be represented as 0000 in binary and the representation of F would be 1111 in binary.

Using hexadecimal makes it easier to read memory addresses and easier to write them as well. Since we have 32-bit memory addresses, there would be 32 positions for specific bits. Since each hexadecimal value represents four bits, the equivalent representation can be done in eight hexadecimal characters. Keep in mind these hexadecimal characters are paired so that they represent four pairs.

Intel x86 platforms use a little endian notation for the memory addressing, which means the least significant byte comes first. The memory address you read has to be reversed to generate the little endian equivalent. To understand manual conversion to little endian, take a look at the following image and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images