Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Haskell High Performance Programming

You're reading from   Haskell High Performance Programming Write Haskell programs that are robust and fast enough to stand up to the needs of today

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781786464217
Length 408 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
 Thomasson Thomasson
Author Profile Icon Thomasson
Thomasson
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Haskell High Performance Programming
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
1. Identifying Bottlenecks FREE CHAPTER 2. Choosing the Correct Data Structures 3. Profile and Benchmark to Your Heart's Content 4. The Devil's in the Detail 5. Parallelize for Performance 6. I/O and Streaming 7. Concurrency and Performance 8. Tweaking the Compiler and Runtime System (GHC) 9. GHC Internals and Code Generation 10. Foreign Function Interface 11. Programming for the GPU with Accelerate 12. Scaling to the Cloud with Cloud Haskell 13. Functional Reactive Programming 14. Library Recommendations Index

Summary


We began this chapter with GHC primitives such as Int# and figured out the effects of strictness and unpacking annotations (bangs and UNPACK-pragmas) in data type definitions. We noted that tuples are lazy and that Bool is an algebraic data type, but we also noted that arrays and vectors represent Bool intelligently as single bits internally.

Then we considered working with numeric, binary, and textual data. We witnessed the performance of the bytestring, text, and vector libraries, all of which get their speed from fusion optimizations, in contrast to linked lists, which have a huge overhead despite also being subject to fusion to some degree. However, linked lists give rise to simple difference lists and zippers. The builder patterns for lists, bytestring, and text were introduced. We discovered that the array package is low-level and clumsy compared to the superior vector package, unless you must support Haskell 98. The Map type in containers was a binary tree, whereas some hashing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images