Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Vision and Behavior for Self-Driving Cars

You're reading from   Hands-On Vision and Behavior for Self-Driving Cars Explore visual perception, lane detection, and object classification with Python 3 and OpenCV 4

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781800203587
Length 374 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
 Venturi Venturi
Author Profile Icon Venturi
Venturi
 Korda Korda
Author Profile Icon Korda
Korda
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: OpenCV and Sensors and Signals
2. Chapter 1: OpenCV Basics and Camera Calibration FREE CHAPTER 3. Chapter 2: Understanding and Working with Signals 4. Chapter 3: Lane Detection 5. Section 2: Improving How the Self-Driving Car Works with Deep Learning and Neural Networks
6. Chapter 4: Deep Learning with Neural Networks 7. Chapter 5: Deep Learning Workflow 8. Chapter 6: Improving Your Neural Network 9. Chapter 7: Detecting Pedestrians and Traffic Lights 10. Chapter 8: Behavioral Cloning 11. Chapter 9: Semantic Segmentation 12. Section 3: Mapping and Controls
13. Chapter 10: Steering, Throttle, and Brake Control 14. Chapter 11: Mapping Our Environments 15. Assessments 16. Other Books You May Enjoy

Pedestrian detection using HOG

The Histogram of Oriented Gradients (HOG) is an object detection technique implemented by OpenCV. In simple cases, it can be used to see whether there is a certain object present in the image, where it is, and how big it is.

OpenCV includes a detector trained for pedestrians, and you are going to use it. It might not be enough for a real-life situation, but it is useful to learn how to use it. You could also train another one with more images to see whether it performs better. Later in the book, you will see how to use deep learning to detect not only pedestrians but also cars and traffic lights.

Sliding window

The HOG pedestrian detector in OpenCV is trained with a model that is 48x96 pixels, and therefore it is not able to detect objects smaller than that (or, better, it could, but the box will be 48x96).

At the core of the HOG detector, there is a mechanism able to tell whether a given 48x96 image is a pedestrian. As this is not terribly...

You have been reading a chapter from
Hands-On Vision and Behavior for Self-Driving Cars
Published in: Oct 2020
Publisher: Packt
ISBN-13: 9781800203587
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images