Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Graph Data Science with Neo4j
Graph Data Science with Neo4j

Graph Data Science with Neo4j: Learn how to use Neo4j 5 with Graph Data Science library 2.0 and its Python driver for your project

eBook
$37.99
Paperback
$46.99
Subscription
Free Trial
Renews at $12.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Key benefits

  • Extract meaningful information from graph data with Neo4j's latest version 5
  • Use Graph Algorithms into a regular Machine Learning pipeline in Python
  • Learn the core principles of the Graph Data Science Library to make predictions and create data science pipelines.

Description

Neo4j, along with its Graph Data Science (GDS) library, is a complete solution to store, query, and analyze graph data. As graph databases are getting more popular among developers, data scientists are likely to face such databases in their career, making it an indispensable skill to work with graph algorithms for extracting context information and improving the overall model prediction performance. Data scientists working with Python will be able to put their knowledge to work with this practical guide to Neo4j and the GDS library that offers step-by-step explanations of essential concepts and practical instructions for implementing data science techniques on graph data using the latest Neo4j version 5 and its associated libraries. You’ll start by querying Neo4j with Cypher and learn how to characterize graph datasets. As you get the hang of running graph algorithms on graph data stored into Neo4j, you’ll understand the new and advanced capabilities of the GDS library that enable you to make predictions and write data science pipelines. Using the newly released GDSL Python driver, you’ll be able to integrate graph algorithms into your ML pipeline. By the end of this book, you’ll be able to take advantage of the relationships in your dataset to improve your current model and make other types of elaborate predictions.

Who is this book for?

If you’re a data scientist or data professional with a foundation in the basics of Neo4j and are now ready to understand how to build advanced analytics solutions, you’ll find this graph data science book useful. Familiarity with the major components of a data science project in Python and Neo4j is necessary to follow the concepts covered in this book.

What you will learn

  • Use the Cypher query language to query graph databases such as Neo4j
  • Build graph datasets from your own data and public knowledge graphs
  • Make graph-specific predictions such as link prediction
  • Explore the latest version of Neo4j to build a graph data science pipeline
  • Run a scikit-learn prediction algorithm with graph data
  • Train a predictive embedding algorithm in GDS and manage the model store

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jan 31, 2023
Length: 288 pages
Edition : 1st
Language : English
ISBN-13 : 9781804612743
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jan 31, 2023
Length: 288 pages
Edition : 1st
Language : English
ISBN-13 : 9781804612743
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$12.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$129.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$179.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 145.97
Causal Inference and Discovery in Python
$53.99
Graph Data Modeling in Python
$44.99
Graph Data Science with Neo4j
$46.99
Total $ 145.97 Stars icon
Visually different images

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5
(6 Ratings)
5 star 50%
4 star 50%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




kbpr Mar 14, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Graph Data Science with Neo4j is a fantastic overview for those starting out in their graph data science journey. The author walks the reader through everything from installation, graph theory and graph algorithms, all the way to supervised machine learning pipelines. She has very clear descriptions and explanations throughout, building up concepts step by step to *show* the reader how to interact with graphs, rather than “telling” and providing a list of features. The result is a solid jumping off point for aspiring graph data scientists, with many great tidbits for the more experienced graph practitioners to return to and reference.
Amazon Verified review Amazon
Phani Dathar Mar 17, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Estelle has done an excellent job of making this book a must read for both the beginners and graph practitioners alike. Given her extensive experience building solutions using graph technology, the practical advice to the readers on how to leverage Neo4j graph database and Neo4j graph data science to address real-world use cases is very valuable.The book starts with step-by-step walkthrough of creating a graph database, introduction to cypher and easy-to-follow examples of ingesting data and building a knowledge graph. It is very important for readers to understand how to store and extract the connections in their data and understand the topology of the network before using graph machine learning and/or building applications on graph databases. The first three chapters in this book combined with the chapter on graph visualization do an excellent job in laying that foundation for moving on to the advanced concepts in the graph data science world.Graph algorithms and graph machine learning are the advanced topics that are also covered in this book with a good set of explanations on why, where and how-to use them. Leveraging graph algorithms to generate graph features, graph embeddings for dimensionality reduction, building machine learning pipelines by integrating graph features are all explained very well and author's expertise shines through in this book.I would recommend this book as a must-read for developers, data scientists and analysts who are starting their journey with graph technology and graph data science as well as graph practitioners who are familiar with the concepts of network science.
Amazon Verified review Amazon
Nathan Smith Mar 30, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The examples in this book are really useful, and people to whom I have recommended the book have also liked it. The author does a good job of walking you through the whole graph data science lifecycle, end-to-end. It is especially valuable in providing guidance that goes beyond the Neo4j product documentation on complex topics like link prediction pipelines. I have not seen a better explanation of the Neo4j Pregel API anywhere.
Amazon Verified review Amazon
Om S Mar 13, 2023
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Graph Data Science with Neo4j" is a practical guide for data scientists who are looking to enhance their skill set by learning how to extract meaningful information from graph data. The book covers various essential concepts and practical instructions for implementing data science techniques on graph data using the latest Neo4j version 5 and its associated libraries. The book is divided into ten chapters, starting with an introduction to Neo4j, installation, and building a knowledge graph.The book then moves on to characterizing a graph dataset and using graph algorithms to analyze it. Readers will also learn how to visualize graph data and build a machine learning model with graph features. The book introduces readers to the newly released GDSL Python driver, which allows for the integration of graph algorithms into a machine learning pipeline.The latter part of the book covers more advanced topics such as building a GDS pipeline for node classification model training and predicting future edges. The book concludes by teaching readers how to write their custom graph algorithm with the Pregel API.Overall, "Graph Data Science with Neo4j" is a useful and practical guide for data scientists looking to learn about graph data science. The book covers a range of topics, from the basics to advanced techniques. The step-by-step instructions and real-world examples make the book easy to follow and understand.
Amazon Verified review Amazon
Shanthababu Pandian May 26, 2023
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Data Science is a buzzing word in recent eras; collecting data from various sources and representing them is a challenging task. A graph is a mathematical object set and derived by vertices or nodes and edges. It has the characteristics of being easily traversed, going from one node to another by following edges.The author started his innings by defining what is a graph database in Part 1 and answering by stating that “Data is saved into nodes, which can be connected through edges to model relationships between them”The author introduces the Neo4j ecosystem and outlines the Neo4j Browser, Neo4j Bloom, and Neodash. Helping with clear steps to create a Neo4j database, inserting data into Neo4j with Cypher, the Neo4j query language. Importing Data into Neo4j to Build a Knowledge Graph.Importing Data into Neo4j to Build a Knowledge Graph using CSV data into Neo4j with Cypher with the classical data from netflix.zip from defining the graph schema to creating nodes and relationships the author provided the detailed steps. Introducing Awesome Procedures on Cypher (APOC) Neo4j plugin and playing with JSON data is a great credit for readers to understand how to utilise the Neo4j environment.In Part 2 the author takes us on a tour of exploring and characterising Graph Data with Neo4j, where we can learn how to characterise a graph dataset, Neo4j Graph Data Science (GDS) library and the most common graph algorithms to analyse the graph topology. Characterising a graph from its node and edge properties like Link direction, Link weight and Node type.Coming to computing the graph degree distribution author gives an idea of the definition of a node’s degree Incoming, Outgoing and Total degree precisely. Help us to understand computing the node degree with Cypher, Building the degree distribution of a graph and how to Improve degree distribution.Under characterising metrics, the author gives heads-up on Triangle count, various clustering coefficients, and their calculations. Furthermore, digging into the Neo4j GDS library and installing the same with Neo4j Desktop is a power pack for the reader and makes them hands-on concerning GDS.Visualizing Graph Data is the final goal for Graph data, the author has provided a detailed walkthrough of visualising the complexity of graph data visualisation, small graph with networkx and matplotlib and large graphs with Gephi.In the end, we have to make the prediction, the author has covered this in Part 3 as Making Predictions on a Graph. In this part. Here the author re-introduces a well-known Python library, namely sci-kit-learn, and extracts data from Neo4j to build a model and how the GDS library helps us to embeddings to build node classification and link prediction pipelines.Build a Machine Learning Model with Graph Features using the GDS Python client and explain how the GDS library is allowing it to run graph algorithms directly from Python without writing any Cypher.The author has provided a very detailed note on graph embedding techniques and algorithms – classification, Node2Vec and building a GDS pipeline for classification model and trainingand predicting future edges are fruitful topics and must-read.Overall … I can give 4.0/5.0 for this. Certainly, a special effort from the author is really much appreciable.-Shanthababu PandianArtificial Intelligence and Analytics | Cloud Data and ML Architect | Scrum MasterNational and International Speaker | Blogger |
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.