Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781838826994
Length 826 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (28) Chapters Close

Preface 1. What Is Reinforcement Learning? 2. OpenAI Gym FREE CHAPTER 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. Higher-Level RL Libraries 8. DQN Extensions 9. Ways to Speed up RL 10. Stocks Trading Using RL 11. Policy Gradients – an Alternative 12. The Actor-Critic Method 13. Asynchronous Advantage Actor-Critic 14. Training Chatbots with RL 15. The TextWorld Environment 16. Web Navigation 17. Continuous Action Space 18. RL in Robotics 19. Trust Regions – PPO, TRPO, ACKTR, and SAC 20. Black-Box Optimization in RL 21. Advanced Exploration 22. Beyond Model-Free – Imagination 23. AlphaGo Zero 24. RL in Discrete Optimization 25. Multi-agent RL 26. Other Books You May Enjoy
27. Index

The OpenAI Gym API

The Python library called Gym was developed and has been maintained by OpenAI (www.openai.com). The main goal of Gym is to provide a rich collection of environments for RL experiments using a unified interface. So, it is not surprising that the central class in the library is an environment, which is called Env. Instances of this class expose several methods and fields that provide the required information about its capabilities. At a high level, every environment provides these pieces of information and functionality:

  • A set of actions that is allowed to be executed in the environment. Gym supports both discrete and continuous actions, as well as their combination
  • The shape and boundaries of the observations that the environment provides the agent with
  • A method called step to execute an action, which returns the current observation, the reward, and the indication that the episode is over
  • A method called reset, which returns the environment to...
You have been reading a chapter from
Deep Reinforcement Learning Hands-On - Second Edition
Published in: Jan 2020
Publisher: Packt
ISBN-13: 9781838826994
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images