Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks and build intelligent systems with Python

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788831109
Length 484 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
 Zaccone Zaccone
Author Profile Icon Zaccone
Zaccone
 Karim Karim
Author Profile Icon Karim
Karim
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Deep Learning with TensorFlow - Second Edition
Contributors
Preface
Other Books You May Enjoy
1. Getting Started with Deep Learning FREE CHAPTER 2. A First Look at TensorFlow 3. Feed-Forward Neural Networks with TensorFlow 4. Convolutional Neural Networks 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. Heterogeneous and Distributed Computing 8. Advanced TensorFlow Programming 9. Recommendation Systems Using Factorization Machines 10. Reinforcement Learning Index

Inception-v3


The Inception micro-architecture was first introduced by Szegedy and others in their 2014 paper, Going Deeper with Convolutions:

Figure 15: Original Inception module used in GoogLeNet

The goal of the inception module is to act as a multi-level feature extractor by computing 1×1, 3×3, and 5×5 convolutions within the same module of the network—the output of these filters is then stacked along the channel dimension before being fed into the next layer in the network. The original incarnation of this architecture was called GoogLeNet, but subsequent manifestations have simply been called Inception vN, where N refers to the version number put out by Google.

You might wonder why we are using different types of convolution on the same input. The answer is that it is not always possible to obtain enough useful features to perform an accurate classification with a single convolution, as far as its parameters have been carefully studied. In fact, with some input it works better with convolutions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images