Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks and build intelligent systems with Python

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788831109
Length 484 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
 Zaccone Zaccone
Author Profile Icon Zaccone
Zaccone
 Karim Karim
Author Profile Icon Karim
Karim
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Deep Learning with TensorFlow - Second Edition
Contributors
Preface
Other Books You May Enjoy
1. Getting Started with Deep Learning FREE CHAPTER 2. A First Look at TensorFlow 3. Feed-Forward Neural Networks with TensorFlow 4. Convolutional Neural Networks 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. Heterogeneous and Distributed Computing 8. Advanced TensorFlow Programming 9. Recommendation Systems Using Factorization Machines 10. Reinforcement Learning Index

Summary


In this chapter, we looked at some TensorFlow-based libraries for DL research and development. We introduced tf.estimator, which is a simplified interface for DL/ML, and is now part of TensorFlow and a high-level ML API that makes it easy to train, configure, and evaluate a variety of ML models. We used the estimator feature to implement a classifier for the Iris dataset.

We also had a look at the TFLearn library, which wraps a lot of TensorFlow APIs. In the example, we used TFLearn to estimate the chance of survival of passengers on the Titanic. To tackle this task, we built a DNN classifier.

Then, we introduced PrettyTensor, which allows TensorFlow operations to be wrapped to chain any number of layers. We implemented a convolutional model in the style of LeNet to quickly resolve the handwritten classification model.

Then we had a quick look at Keras, which is designed for minimalism and modularity, allowing the user to quickly define DL models. Using Keras, we have learned how to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images