Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with Keras

You're reading from   Deep Learning with Keras Implementing deep learning models and neural networks with the power of Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787128422
Length 318 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Title Page
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Neural Networks Foundations FREE CHAPTER 2. Keras Installation and API 3. Deep Learning with ConvNets 4. Generative Adversarial Networks and WaveNet 5. Word Embeddings 6. Recurrent Neural Network — RNN 7. Additional Deep Learning Models 8. AI Game Playing 9. Conclusion

Summary


In this chapter, we discussed GANs. A GAN typically consists of two networks; one is trained to forge synthetic data that looks authentic, and the second is trained to discriminate authentic data against forged data. The two networks continuously compete, and in doing so, they keep improving each other. We reviewed an open source code, learning to forge MNIST and CIFAR-10 images that look authentic. In addition, we discussed WaveNet, a deep generative network proposed by Google DeepMind for teaching computers how to reproduce human voices and musical instruments with impressive quality. WaveNet directly generates raw audio with a parametric text-to-speech approach based on dilated convolutional networks. Dilated convolutional networks are a special kind of ConvNets where convolution filters have holes, allowing the receptive field to grow exponentially in depth and therefore efficiently cover thousands of audio time-steps. DeepMind showed how it is possible to use WaveNet to synthesize...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images