Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Data Augmentation with Python
Data Augmentation with Python

Data Augmentation with Python: Enhance deep learning accuracy with data augmentation methods for image, text, audio, and tabular data

Arrow left icon
Profile Icon Duc Haba
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (10 Ratings)
Paperback Apr 2023 394 pages 1st Edition
eBook
$35.99
Paperback
$44.99
Subscription
Free Trial
Renews at $12.99p/m
Arrow left icon
Profile Icon Duc Haba
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (10 Ratings)
Paperback Apr 2023 394 pages 1st Edition
eBook
$35.99
Paperback
$44.99
Subscription
Free Trial
Renews at $12.99p/m
eBook
$35.99
Paperback
$44.99
Subscription
Free Trial
Renews at $12.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Key benefits

  • Explore beautiful, customized charts and infographics in full color
  • Work with fully functional OO code using open source libraries in the Python Notebook for each chapter
  • Unleash the potential of real-world datasets with practical data augmentation techniques

Description

Data is paramount in AI projects, especially for deep learning and generative AI, as forecasting accuracy relies on input datasets being robust. Acquiring additional data through traditional methods can be challenging, expensive, and impractical, and data augmentation offers an economical option to extend the dataset. The book teaches you over 20 geometric, photometric, and random erasing augmentation methods using seven real-world datasets for image classification and segmentation. You’ll also review eight image augmentation open source libraries, write object-oriented programming (OOP) wrapper functions in Python Notebooks, view color image augmentation effects, analyze safe levels and biases, as well as explore fun facts and take on fun challenges. As you advance, you’ll discover over 20 character and word techniques for text augmentation using two real-world datasets and excerpts from four classic books. The chapter on advanced text augmentation uses machine learning to extend the text dataset, such as Transformer, Word2vec, BERT, GPT-2, and others. While chapters on audio and tabular data have real-world data, open source libraries, amazing custom plots, and Python Notebook, along with fun facts and challenges. By the end of this book, you will be proficient in image, text, audio, and tabular data augmentation techniques.

Who is this book for?

This book is for data scientists and students interested in the AI discipline. Advanced AI or deep learning skills are not required; however, knowledge of Python programming and familiarity with Jupyter Notebooks are essential to understanding the topics covered in this book.

What you will learn

  • Write OOP Python code for image, text, audio, and tabular data
  • Access over 150,000 real-world datasets from the Kaggle website
  • Analyze biases and safe parameters for each augmentation method
  • Visualize data using standard and exotic plots in color
  • Discover 32 advanced open source augmentation libraries
  • Explore machine learning models, such as BERT and Transformer
  • Meet Pluto, an imaginary digital coding companion
  • Extend your learning with fun facts and fun challenges

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 28, 2023
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781803246451
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Apr 28, 2023
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781803246451
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$12.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$129.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$179.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 144.97
Python Deep Learning
$49.99
Synthetic Data for Machine Learning
$49.99
Data Augmentation with Python
$44.99
Total $ 144.97 Stars icon
Visually different images

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(10 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Dr. Matthias Nagel Aug 11, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Ok
Amazon Verified review Amazon
Ady Ngom Jun 14, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The author's passion for teaching really shines through this piece. A definitive must read if you want to start navigating the world of possibilities with AI and need a solid compass to guide you through.
Amazon Verified review Amazon
crawdaddie Jul 05, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
"Boosting AI Accuracy with Real-World Datasets" is a helpful and practical guide for people who want to use Python and improve their AI models using data augmentation techniques. The book has lots of useful information, easy-to-understand explanations, and practical examples that allow readers to learn and become skilled in enhancing images, text, audio, and tabular data. This book is a valuable resource because of its practical approach.Data augmentation is a required technique for improving AI accuracy, and Duc Haba does an excellent job of explaining various augmentation methods using real-world datasets. Whether it's image, text, audio, or tabular data, readers will find detailed explanations, code samples, and insights into the biases and safe parameters for each augmentation method.The book covers a wide range of topics, providing over 150 functional object-oriented methods and open-source libraries to help readers achieve optimal results. This book is accessible to aspiring data scientists and those interested in the AI discipline, even without prior AI or deep learning skills.
Amazon Verified review Amazon
Poker Nanny Jun 07, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book effectively introduces readers to the topic of Data Augmentation. While the subject itself is vast and cannot be thoroughly explored in a single book, the author takes a practical approach by presenting various recipes that demonstrate different techniques for augmenting data across a variety of categories. Considering its scope, this book serves its purpose well in acquainting readers with Data Augmentation. Personally, I found the chapter on Biases in Data Augmentation to be the highlight of the book.
Amazon Verified review Amazon
Om S Jun 06, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
"Data Augmentation with Python" is an essential guide for data scientists and students seeking to improve AI accuracy using real-world datasets. With over 150 functional methods and open source libraries, the book covers image, text, audio, and tabular data augmentation. The author emphasizes the importance of robust datasets in AI projects and presents practical techniques for extending data economically. Through Python code examples and Jupyter Notebooks, readers gain hands-on experience with various augmentation methods. The inclusion of colorful charts and custom plots enhances understanding, while fun facts and challenges add an engaging touch. Suitable for beginners and experienced practitioners, this book equips readers with the skills to enhance AI accuracy through effective data augmentation.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.