Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Automated Machine Learning on AWS
Automated Machine Learning on AWS

Automated Machine Learning on AWS: Fast-track the development of your production-ready machine learning applications the AWS way

Arrow left icon
Profile Icon Trenton Potgieter
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9 (10 Ratings)
Paperback Apr 2022 420 pages 1st Edition
eBook
$39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $12.99p/m
Arrow left icon
Profile Icon Trenton Potgieter
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9 (10 Ratings)
Paperback Apr 2022 420 pages 1st Edition
eBook
$39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $12.99p/m
eBook
$39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $12.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Key benefits

  • Explore the various AWS services that make automated machine learning easier
  • Recognize the role of DevOps and MLOps methodologies in pipeline automation
  • Get acquainted with additional AWS services such as Step Functions, MWAA, and more to overcome automation challenges

Description

AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services. Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team. By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production.

Who is this book for?

This book is for the novice as well as experienced machine learning practitioners looking to automate the process of building, training, and deploying machine learning-based solutions into production, using both purpose-built and other AWS services. A basic understanding of the end-to-end machine learning process and concepts, Python programming, and AWS is necessary to make the most out of this book.

What you will learn

  • Employ SageMaker Autopilot and Amazon SageMaker SDK to automate the machine learning process
  • Understand how to use AutoGluon to automate complicated model building tasks
  • Use the AWS CDK to codify the machine learning process
  • Create, deploy, and rebuild a CI/CD pipeline on AWS
  • Build an ML workflow using AWS Step Functions and the Data Science SDK
  • Leverage the Amazon SageMaker Feature Store to automate the machine learning software development life cycle (MLSDLC)
  • Discover how to use Amazon MWAA for a data-centric ML process

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 15, 2022
Length: 420 pages
Edition : 1st
Language : English
ISBN-13 : 9781801811828
Category :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Apr 15, 2022
Length: 420 pages
Edition : 1st
Language : English
ISBN-13 : 9781801811828
Category :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$12.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$129.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$179.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 139.97
Getting Started with Amazon SageMaker Studio
$43.99
Machine Learning Engineering on AWS
$46.99
Automated Machine Learning on AWS
$48.99
Total $ 139.97 Stars icon
Visually different images

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9
(10 Ratings)
5 star 90%
4 star 10%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Ashish Patel Jun 24, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
👉 It explains how to automatically configure a practical step for the ML process, its importance and an important governance factor to consider when performing this automation, and how to use the various AWS features that drive ML products to production.👉 The AutoML system, which aims to automate end-to-end ML model development, is highly demanding. Whereas this Amazon Sage Maker autopilot framework allows us to perform this critical steps in the typical ML process, which includes data mining, algorithm selection, model training, and model optimization.👉 In the Practise of AutoML, Autogluon provides an AutoML methodology that focuses on automated stack ensemble, deep learning, and real-world applications spanning images, text, and tabular data. We can wrap the ML application with SageMaker BYOC (bring your own container) or AWS Deep Learning Container services.👉 The CI / CD pipeline is the backbone of modern software development lifecycle (SDLC) and machine learning lifecycle (MLSDLC) automation. AWS CDK help in CI / CD approaches to machine learning allow you to scale ML in your organization, maintain a balanced development and production environment, and perform version control, on-demand testing, and ultimately automation.👉 Each CI / CD Pipeline has some limitations, such as the ML model process (from the point of view of ML practitioners) and all the paths to automated model deployment (from the perspective of application development and operation teams) Some AWS services, such as AWS CodePipeline and AWS CodeCommit, help to overcome this.👉 AWS Step Functions lets you build resilient workflows using AWS services such as Amazon Dynamodib, AWS Landa, and Amazon Sage Maker. In the Sagemaker Pipeline AWS step Function, you can organize end-to-end machine learning workflows that include data pre-processing, post-processing, feature engineering, data validation, and sample evaluation on Amazon SageMaker.👉 Introducing DataCentric Approach with Apache Airflow, it helps multiple Amazon SageMaker operators, whom are available with Airflow, including model training, hyperparameter tuning, model deployment, and batch transform. This allows you to use the same orchestration tool to manage ML workflows with tasks running on Amazon SageMaker.👉 ML software development life cycle (MLSDLC) introducing the six-phase flow of this : Plan ➡️ Design ➡️ Build ➡️ Test ➡️ Deploy ➡️ Maintain
Amazon Verified review Amazon
Sireesha Muppala Apr 16, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is an awesome book for anyone looking to move beyond the ML model development basics and operationalize machine learning to achieve business value. Author's experience working with various customers comes through as he expertly discusses ML theory, business use cases and takes the reader on a journey of various tools to automate building an ML application. The GitHub repository accompanying the book is a great resource to gain hands-on expertise of the concepts covered. As the ML field continues to evolve, the timeless ideas covered such as automation and CI/CD will help organizations deliver repeated business value.
Amazon Verified review Amazon
Amazon Customer Oct 12, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Before commenting on the contents of Automated Machine Learning on AWS, I must express how much I have to appreciate the fact that this book was newly published. As web services like AWS change the UIs or features of some of its services fairly frequently, this book’s examples manage to provide accurate hands-on instructions to toggling the relevant AWS services. Content-wise, the book is structured in a progressive manner. It first introduces how to perform CRISP-DM methodology using AutoPilot and AutoGluon, and introduces their pros and cons. Then, in section 2, it provides solutions to address the cons of the solutions mentioned in section 1, along with introducing the concepts and hands-ons for CI/CD methodology. As the topics progress further, more AWS solutions are mentioned tailored to different DS/ML development styles. So far I’ve read over half of the book and have felt more confident exercising my MLOps in the workplace. I would recommend this book for DS and MLE who wants to explore more cloud solutions for end-to-end ML projects. However, it might be a bit challenging for readers who have no prior experience with AWS and the common ML deployment tools such as Docker and Kubernetes. Fortunately, the author has kindly provided links whenever there are new AWS services or concepts being introduced, to facilitate our learning. It is daunting to learn ML deployment, but with the help of Automated Machine Learning on AWS, the journey will be easier.
Amazon Verified review Amazon
Guangping zhang May 05, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Automated machine learning (AutoML) is more and more important, several automated ML services or libraries including AWS AutoML appeared recently. This book (Automated MachineLearning on AWS) is about AWS autoML, it fully introduced the most important applications of AWS autoML.This book first introduces a Continuous Integration and Continuous Delivery (CI/CD) methodology. Then, it uses chapters to introduce automating the ML Process and how to build ML workflow using Apache Airflow and Amazon Managed Workflows.At last, the book introduces ML Software development life cycle (MLSDLC) and the application.I think It's a very good book for the customers who are interested in learning AWS automated machine learning.
Amazon Verified review Amazon
789 May 13, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
At first glance, this book appears to be about AutoML options on AWS and while that aspect is firmly covered, the scope of the book is much broader. The author covers a wide variety of tools available within AWS for automating the entire ML lifecycle. There are many aspects that can be automated within an ML lifecycle, including data prep, model training and tuning, model deployment, and model monitoring. Additionally, you may want to implement CICD automation and automatic infrastructure provisioning via infrastructure as code. Amazingly, the author covers all of these aspects with practical examples and code snippets. My favorite part of the book was the coverage of the AWS CDK which allows you tor provision AWS resource stacks using python.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.