Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Jupyter for Data Science

You're reading from   Jupyter for Data Science Exploratory analysis, statistical modeling, machine learning, and data visualization with Jupyter

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781785880070
Length 242 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
 Toomey Toomey
Author Profile Icon Toomey
Toomey
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Jupyter and Data Science 2. Working with Analytical Data on Jupyter FREE CHAPTER 3. Data Visualization and Prediction 4. Data Mining and SQL Queries 5. R with Jupyter 6. Data Wrangling 7. Jupyter Dashboards 8. Statistical Modeling 9. Machine Learning Using Jupyter 10. Optimizing Jupyter Notebooks

Using SciPy in Jupyter


SciPy is an open source library for mathematics, science and, engineering. With such a wide scope, there are many areas we can explore using SciPy:

  • Integration
  • Optimization
  • Interpolation
  • Fourier transforms
  • Linear algebra
  • There are several other intense sets of functionality as well, such as signal processing

Using SciPy integration in Jupyter

A standard mathematical process is integrating an equation. SciPy accomplishes this using a callback function to iteratively calculate out the integration of your function. For example, suppose that we wanted to determine the integral of the following equation:

We would use a script like the following. We are using the definition of pi from the standard math package.

from scipy.integrate import quadimport mathdef integrand(x, a, b):    return a*math.pi + ba = 2b = 1quad(integrand, 0, 1, args=(a,b))

Again, this coding is very clean and simple, yet almost impossible to do in many languages. Running this script in Jupyter we see the results...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Jupyter for Data Science
You have been reading a chapter from
Jupyter for Data Science
Published in: Oct 2017
Publisher: Packt
ISBN-13: 9781785880070
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images
Modal Close icon
Modal Close icon