Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Data Structures and Algorithms with Rust

You're reading from   Hands-On Data Structures and Algorithms with Rust Learn programming techniques to build effective, maintainable, and readable code in Rust 2018

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788995528
Length 316 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Claus Matzinger Claus Matzinger
Author Profile Icon Claus Matzinger
Claus Matzinger
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Hello Rust! FREE CHAPTER 2. Cargo and Crates 3. Storing Efficiently 4. Lists, Lists, and More Lists 5. Robust Trees 6. Exploring Maps and Sets 7. Collections in Rust 8. Algorithm Evaluation 9. Ordering Things 10. Finding Stuff 11. Random and Combinatorial 12. Algorithms of the Standard Library 13. Assessments 14. Other Books You May Enjoy

Objects and behavior

Organizing code in Rust is a bit different from regular object-oriented languages such as C#. There, an object is supposed to change its own state, interfaces are simple contract definitions, and specialization is often modeled using class inheritance:

class Door {
private bool is_open = false;

public void Open() {
this.is_open = true;
}
}

With Rust, this pattern would require constant mutability of any Door instance (thereby requiring explicit locking for thread safety), and without inheritance GlassDoor would have to duplicate code, making it harder to maintain.

Instead, it's recommended to create traits to implement (shared) behavior. Traits have a lot in common with abstract classes in traditional languages (such as default implementations of methods/functions), yet any struct in Rust can (and should) implement several of those traits:

struct Door {
is_open: bool
}

impl Door {
fn new(is_open: bool) -> Door {
Door { is_open: is_open }
}
}

trait Openable {
fn open(&mut self);
}

impl Openable for Door {
fn open(&mut self) {
self.is_open = true;
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn open_door() {
let mut door = Door::new(false);
door.open();
assert!(door.is_open);
}
}

This pattern is very common in the standard library, and often third-party libraries will even add behavior to existing types by implementing traits in their code (also known as extension traits).

Other than a typical class, where data fields and methods are in a single construct, Rust emphasizes the separation between those by declaring a struct for data and an impl part for the methods/functions. Traits name and encapsulate behaviors so they can easily be imported, shared, and reused.

You have been reading a chapter from
Hands-On Data Structures and Algorithms with Rust
Published in: Jan 2019
Publisher: Packt
ISBN-13: 9781788995528
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Banner background image