Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Deep Learning Cookbook

You're reading from   R Deep Learning Cookbook Solve complex neural net problems with TensorFlow, H2O and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121089
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
PKS Prakash PKS Prakash
Author Profile Icon PKS Prakash
PKS Prakash
 Sri Krishna Rao Sri Krishna Rao
Author Profile Icon Sri Krishna Rao
Sri Krishna Rao
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Getting Started FREE CHAPTER 2. Deep Learning with R 3. Convolution Neural Network 4. Data Representation Using Autoencoders 5. Generative Models in Deep Learning 6. Recurrent Neural Networks 7. Reinforcement Learning 8. Application of Deep Learning in Text Mining 9. Application of Deep Learning to Signal processing 10. Transfer Learning

Setting up a neural network using H2O


In this section, we will cover the application of H2O in setting up a neural network. The example will use a similar dataset as used in logistic regression.

Getting ready

We first load all the required packages with the following code:

# Load the required packages
require(h2o)

Then, initialize a single-node H2O instance using the h2o.init() function on eight cores and instantiate the corresponding client module on the IP address localhost and port number 54321:

# Initialize H2O instance (single node)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE,min_mem_size = "20G",nthreads = 8)

How to do it...

The section shows how to build neural network using H20.

  1. Load the occupancy train and test datasets in R:
# Load the occupancy data 
occupancy_train <-read.csv("C:/occupation_detection/datatraining.txt",stringsAsFactors = T)
occupancy_test <- read.csv("C:/occupation_detection/datatest.txt",stringsAsFactors = T)
  1. The following independent (x)...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime
Visually different images