Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Concurrency Programming with Java 8

You're reading from   Mastering Concurrency Programming with Java 8 Master the principles and techniques of multithreaded programming with the Java 8 Concurrency API

Arrow left icon
Product type Paperback
Published in Feb 2016
Publisher Packt
ISBN-13 9781785886126
Length 430 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Javier Fernández González Javier Fernández González
Author Profile Icon Javier Fernández González
Javier Fernández González
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Mastering Concurrency Programming with Java 8
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. The First Step – Concurrency Design Principles FREE CHAPTER 2. Managing Lots of Threads – Executors 3. Getting the Maximum from Executors 4. Getting Data from the Tasks – The Callable and Future Interfaces 5. Running Tasks Divided into Phases – The Phaser Class 6. Optimizing Divide and Conquer Solutions – The Fork/Join Framework 7. Processing Massive Datasets with Parallel Streams – The Map and Reduce Model 8. Processing Massive Datasets with Parallel Streams – The Map and Collect Model 9. Diving into Concurrent Data Structures and Synchronization Utilities 10. Integration of Fragments and Implementation of Alternatives 11. Testing and Monitoring Concurrent Applications Index

The first example – the k-means clustering algorithm


The k-means clustering algorithm is a clustering algorithm to group a set of items not previously classified into a predefined number of k clusters. It's very popular within the data mining and machine learning world to organize and classify data in an unsupervised way.

Each item is normally defined by a vector of characteristics or attributes. All the items have the same number of attributes. Each cluster is also defined by a vector with the same number of attributes that represents all the items classified into that cluster. This vector is named the centroid. For example, if the items are defined by numeric vectors, the clusters are defined by the mean of the items classified into that cluster.

Basically, the algorithm has four steps:

  1. Initialization: In the first step, you have to create the initial vectors that represent the K clusters. Normally, you will initialize those vectors randomly.

  2. Assignment: Then, you classify each item into...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime
Banner background image