Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Data Mining with Python

You're reading from   Learning Data Mining with Python Harness the power of Python to analyze data and create insightful predictive models

Arrow left icon
Product type Paperback
Published in Jul 2015
Publisher Packt
ISBN-13 9781784396053
Length 344 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Robert Layton Robert Layton
Author Profile Icon Robert Layton
Robert Layton
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Learning Data Mining with Python
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with Data Mining FREE CHAPTER 2. Classifying with scikit-learn Estimators 3. Predicting Sports Winners with Decision Trees 4. Recommending Movies Using Affinity Analysis 5. Extracting Features with Transformers 6. Social Media Insight Using Naive Bayes 7. Discovering Accounts to Follow Using Graph Mining 8. Beating CAPTCHAs with Neural Networks 9. Authorship Attribution 10. Clustering News Articles 11. Classifying Objects in Images Using Deep Learning 12. Working with Big Data Next Steps… Index

Creating your own transformer


As the complexity and type of dataset changes, you might find that you can't find an existing feature extraction transformer that fits your needs. We will see an example of this in Chapter 7, Discovering Accounts to Follow Using Graph Mining, where we create new features from graphs.

A transformer is akin to a converting function. It takes data of one form as input and returns data of another form as output. Transformers can be trained using some training dataset, and these trained parameters can be used to convert testing data.

The transformer API is quite simple. It takes data of a specific format as input and returns data of another format (either the same as the input or different) as output. Not much else is required of the programmer.

The transformer API

Transformers have two key functions:

  • fit(): This takes a training set of data as input and sets internal parameters

  • transform(): This performs the transformation itself. This can take either the training dataset...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at ₹800/month. Cancel anytime
Visually different images