Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Statistical Application Development with R and Python

You're reading from   Statistical Application Development with R and Python Develop applications using data processing, statistical models, and CART

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher
ISBN-13 9781788621199
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Statistical Application Development with R and Python - Second Edition
Credits
About the Author
Acknowledgment
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Data Characteristics FREE CHAPTER 2. Import/Export Data 3. Data Visualization 4. Exploratory Analysis 5. Statistical Inference 6. Linear Regression Analysis 7. Logistic Regression Model 8. Regression Models with Regularization 9. Classification and Regression Trees 10. CART and Beyond Index

Summary


Median and its variants form the core measures of EDA and you would have got a hang of it by the first section. The visualization techniques of EDA also compose more than just the stem-and-leaf plot, letter values, and bagplot. As EDA is basically about your attitude and approach, it is important to realize that you can (and should) use any method that is instinctive and appropriate for the data on hand. We have also built our first regression model in the resistant line and seen how robust it is to the outliers. Smoothing data and median polish are also advanced EDA techniques that the reader is acquainted with from their respective sections.

EDA is exploratory in nature and its findings may need further statistical validations. The next chapter on statistical inference addresses what Tukey calls, confirmatory analysis. Especially, we look at techniques that give good point estimates of the unknown parameters. This is then backed with further techniques such as goodness-of-fit and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images