Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Data Analysis Projects

You're reading from   R Data Analysis Projects Build end to end analytics systems to get deeper insights from your data

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781788621878
Length 366 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Gopi Subramanian Gopi Subramanian
Author Profile Icon Gopi Subramanian
Gopi Subramanian
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Association Rule Mining 2. Fuzzy Logic Induced Content-Based Recommendation FREE CHAPTER 3. Collaborative Filtering 4. Taming Time Series Data Using Deep Neural Networks 5. Twitter Text Sentiment Classification Using Kernel Density Estimates 6. Record Linkage - Stochastic and Machine Learning Approaches 7. Streaming Data Clustering Analysis in R 8. Analyze and Understand Networks Using R

Summary


We started the chapter by introducing time series data and the traditional approaches to solving them. We gave you an overview of deep learning networks and information on how they learn. Furthermore, we introduced the MXNet R package. Then we prepared our stock market data so that our deep learning network could consume it. Finally, we built two deep learning networks, one for regression, where we predicted the actual closing price of the stock, and one for classification, where we predicted whether the stock price would move up or down.

In the next chapter, we will deal with sentiment mining. We will show how to extract tweets in R, process them and use a dictionary based method to find the sentiments of the tweets. Finally using those scored tweets as datasets we will build a Naive Bayes model based on Kernel density estimate.

 

 

 

 

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images