Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Convolutional Neural Networks with TensorFlow

You're reading from   Hands-On Convolutional Neural Networks with TensorFlow Solve computer vision problems with modeling in TensorFlow and Python

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781789130331
Length 272 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
 Araujo Araujo
Author Profile Icon Araujo
Araujo
 Zafar Zafar
Author Profile Icon Zafar
Zafar
 Tzanidou Tzanidou
Author Profile Icon Tzanidou
Tzanidou
 Burton Burton
Author Profile Icon Burton
Burton
 Patel Patel
Author Profile Icon Patel
Patel
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
1. Setup and Introduction to TensorFlow FREE CHAPTER 2. Deep Learning and Convolutional Neural Networks 3. Image Classification in TensorFlow 4. Object Detection and Segmentation 5. VGG, Inception Modules, Residuals, and MobileNets 6. Autoencoders, Variational Autoencoders, and Generative Adversarial Networks 7. Transfer Learning 8. Machine Learning Best Practices and Troubleshooting 9. Training at Scale 1. References 2. Other Books You May Enjoy Index

The TensorFlow way of thinking


Using TensorFlow requires a slightly different approach to programming than what you might be used to using, so let's explore what makes it different.

At their core, all TensorFlow programs have two main parts to them:

  • Construction of a computational graph called tf.Graph
  • Running the computational graph using tf.Session

In TensorFlow, a computational graph is a series of TensorFlow operations arranged into a graph structure. The TensorFlow graph contains two main types of components:

  • Operations: More commonly called ops, for short, these are the nodes in your graph. Ops carry out any computation that needs to be done in your graph. Generally, they consume and produce Tensors. Some ops are special and can have certain side effects when they run.
  • Tensors: These are the edges of your graph; they connect up the nodes and represent data that flows through it. Most TensorFlow ops will produce and consume these tf.Tensors.

In TensorFlow, the main object that you work with is called a Tensor. Tensors are the generalization of vectors and matrices. Even though vectors are one-dimensional and matrices are two-dimensional, a Tensor can be n-dimensional. TensorFlow represents Tensors as n-dimensional arrays of a user-specified data type, for example, float32.

TensorFlow programs work by first building a graph of computation. This graph will produce some tf.Tensor output. To evaluate this output, you must run it within a tf.Session by calling tf.Session.run on your output Tensor. When you do this, TensorFlow will execute all the parts of your graph that need to be executed in order to evaluate the tf.Tensor you asked it to run.

You have been reading a chapter from
Hands-On Convolutional Neural Networks with TensorFlow
Published in: Aug 2018
Publisher: Packt
ISBN-13: 9781789130331
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images