Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

Tech Guides - DevOps

29 Articles
article-image-differences-kubernetes-docker-swarm
Richard Gall
02 Apr 2018
4 min read
Save for later

The key differences between Kubernetes and Docker Swarm

Richard Gall
02 Apr 2018
4 min read
The orchestration war between Kubernetes and Docker Swarm appears to be over. Back in October, Docker announced that its Enterprise Edition could be integrated with Kubernetes. This move was widely seen as the Docker team conceding to Kubernetes dominance as an orchestration tool. But Docker Swarm nevertheless remains popular; it doesn't look like it's about to fall off the face of the earth. So what is the difference between Kubernetes and Docker Swarm? And why should you choose one over the other?  To start with it's worth saying that both container orchestration tools have a lot in common. Both let you run a cluster of containers, allowing you to increase the scale of your container deployments significantly without cloning yourself to mess about with the Docker CLI (although as you'll see, you could argue that one is more suited to scalability than the other). Ultimately, you'll need to view the various features and key differences between Docker Swarm and Kubernetes in terms of what you want to achieve. Do you want to get up and running quickly? Are you looking to deploy containers on a huge scale? Here's a brief but useful comparison of Kubernetes and Docker Swarm. It should help you decide which container orchestration tool you should be using. Docker Swarm is easier to use than Kubernetes One of the main reasons you’d choose Docker Swarm over Kubernetes is that it has a much more straightforward learning curve. As popular as it is, Kubernetes is regarded by many developers as complex. Many people complain that it is difficult to configure. Docker Swarm, meanwhile, is actually pretty simple. It’s much more accessible for less experienced programmers. And if you need a container orchestration solution now, simplicity is likely going to be an important factor in your decision making. ...But Docker Swarm isn't as customizable Although ease of use is definitely one thing Docker Swarm has over Kubernetes, it also means there's less you can actually do with it. Yes, it gets you up and running, but if you want to do something a little different, you can't. You can configure Kubernetes in a much more tailored way than Docker Swarm. That means that while the learning curve is steeper, the possibilities and opportunities open to you will be far greater. Kubernetes gives you auto-scaling - Docker Swarm doesn't When it comes to scalability it’s a close race. Both tools are able to run around 30,000 containers on 1,000 nodes, which is impressive. However, when it comes to auto-scaling, Kubernetes wins because Docker doesn’t offer that functionality out of the box. Monitoring container deployments is easier with Kubernetes This is where Kubernetes has the edge. It has in-built monitoring and logging solutions. With Docker Swarm you’ll have to use third-party applications. That isn’t necessarily a huge problem, but it does make life ever so slightly more difficult. Whether or not it makes life more difficult to outweigh the steeper Kubernetes learning curve however is another matter… Is Kubernetes or Docker Swarm better? Clearly, Kubernetes is a more advanced tool than Docker Swarm. That's one of the reasons why the Docker team backed down and opened up their enterprise tool for integration with Kubernetes. Kubernetes is simply the software that's defining container orchestration. And that's fine - Docker has cemented its position within the stack of technologies that support software automation and deployment. It's time to let someone else take on the challenge of orchestration But although Kubernetes is the more 'advanced' tool, that doesn't mean you should overlook Docker Swarm. If you want to begin deploying container clusters, without the need for specific configurations, then don't allow yourself to be seduced by something shinier, something ostensibly more popular. As with everything else in software development, understand and define what job needs to be done - then choose the right tool for the job.
Read more
  • 0
  • 1
  • 8457

article-image-bridging-gap-between-data-science-and-devops
Richard Gall
23 Mar 2016
5 min read
Save for later

Bridging the gap between data science and DevOps with DataOps

Richard Gall
23 Mar 2016
5 min read
What’s the real value of data science? Hailed as the sexiest job of the 21st century just a few years ago, there are rumors that it’s not quite proving its worth. Gianmario Spacagna, a data scientist for Barclays bank in London, told Computing magazine at Spark Summit Europe in October 2015 that, in many instances, there’s not enough impact from data science teams – “It’s not a playground. It’s not academic” he said. His solution sounds simple. We need to build a bridge between data science and DevOps - and DataOps is perhaps the answer. He says: "If you're a start-up, the smartest person you want to hire is your DevOps guy, not a data scientist. And you need engineers, machine learning specialists, mathematicians, statisticians, agile experts. You need to cover everything otherwise you have a very hard time to actually create proper applications that bring value." This idea makes a lot of sense. It’s become clear over the past few years that ‘data’ itself isn’t enough; it might even be distracting for some organizations. Sometimes too much time is spent in spreadsheets and not enough time is spent actually doing stuff. Making decisions, building relationships, building things – that’s where real value comes from. What Spacagna has identified is ultimately a strategic flaw within how data science is used in many organizations. There’s often too much focus on what data we have and what we can get, rather than who can access it and what they can do with it. If data science isn’t joining the dots, DevOps can help. True, a large part of the problem is strategic, but DevOps engineers can also provide practical solutions by building dashboards and creating APIs. These sort of things immediately give data additional value by making they make it more accessible and, put simply, more usable. Even for a modest medium sized business, data scientists and analysts will have minimal impact if they are not successfully integrated into the wider culture. While it’s true that many organizations still struggle with this, Airbnb demonstrate how to do it incredibly effectively. Take a look at their Airbnb Engineering and Data Science publication on Medium. In this post, they talk about the importance of scaling knowledge effectively. Although they don’t specifically refer to DevOps, it’s clear that DevOps thinking has informed their approach. In the products they’ve built to scale knowledge, for example, the team demonstrate a very real concern for accessibility and efficiency. What they build is created so people can do exactly what they want and get what they need from data. It’s a form of strict discipline that is underpinned by a desire for greater freedom. If you keep reading Airbnb’s publication, another aspect of ‘DevOps thinking’ emerges: a relentless focus on customer experience. By this, I don’t simply mean that the work done by the Airbnb engineers is specifically informed by a desire to improve customer experiences; that’s obvious. Instead, it’s the sense that tools through which internal collaboration and decision making take place should actually be similar to a customer experience. They need to be elegant, engaging, and intuitive. This doesn’t mean seeing every relationship as purely transactional, based on some perverse logic of self-interest, but rather having a deeper respect for how people interact and share ideas. If DevOps is an agile methodology that bridges the gap between development and operations, it can also help to bridge the gap between data and operations. DataOps - bringing DevOps and data science together This isn’t a new idea. As much as I’d like to, I can’t claim credit for inventing ‘DataOps’. But there’s not really much point in asserting that distinction. DataOps is simply another buzzword for the managerial class. And while some buzzwords have value, I’m not so sure that we need another one. More importantly, why create another gap between Data and Development? That gap doesn’t make sense in the world we’re building with software today. Even for web developers and designers, the products they are creating are so driven by data that separating the data from the dev is absurd. Perhaps then, it’s not enough to just ask more from our data science as Gianmario Spacagna does. DevOps offers a solution, but we’re going to miss out on the bigger picture if we start asking for more DevOps engineers and some space for them to sit next to the data team. We also need to ask how data science can inform DevOps too. It’s about opening up a dialogue between these different elements. While DevOps evangelists might argue that DevOps has already started that, the way forward is to push for more dialogue, more integration and more collaboration. As we look towards the future, with the API economy becoming more and more important to the success of both startups and huge corporations, the relationships between all these different areas are going to become more and more complex. If we want to build better and build smarter we’re going to have to talk more. DevOps and DataOps both offer us a good place to start the conversation, but it’s important to remember it’s just the start.
Read more
  • 0
  • 0
  • 7482

article-image-7-crucial-devops-metrics-that-you-need-to-track
Guest Contributor
20 Aug 2019
9 min read
Save for later

7 crucial DevOps metrics that you need to track

Guest Contributor
20 Aug 2019
9 min read
DevOps has taken the IT world by storm and is increasingly becoming the de facto industry standard for software development. The DevOps principles have the potential to result in a competitive differentiation allowing the teams to deliver a high quality software developed at a faster rate which adequately meets the customer requirements. DevOps prevents the development and operations teams from functioning in two distinct silos and ensures seamless collaboration between all the stakeholders. Collection of feedback and its subsequent incorporation plays a critical role in DevOps implementation and formulation of a CI/CD pipeline. Successful transition to DevOps is a journey, not a destination. Setting up benchmarks, measuring yourself against them and tracking your progress is important for determining the stage of DevOps architecture you are in and ensuring a smooth journey onward. Feedback loops are a critical enabler for delivery of the application and metrics help transform the qualitative feedback into quantitative form. Collecting the feedback from the stakeholders is only half the work, gathering insights and communicating it through the DevOps team to keep the CI/CD pipeline on track is equally important. This is where the role of metrics comes in. DevOps metrics are the tools that your team needs for ensuring that the feedback is collected and communicated with the right people to improve upon the existing processes and functions in a unit. Here are 7 DevOps metrics that your team needs to track for a successful DevOps transformation: 1. Deployment frequency Quick iteration and continuous delivery are key measurements of DevOps success. It basically means how long the software takes to deploy and how often the deployment takes place. Keeping track of the frequency with which the new code is deployed helps keep track of the development process. The ultimate goal of deployment is to be able to release smaller deployments of code as quickly as possible. Smaller deployments are easier to test and release. They also improve the discoverability of bugs in the code allowing for faster and timely resolution of the same. Determining the frequency of deployments needs to be done separately for development, testing, staging, and production environments. Keeping track of the frequency of deployment to QA or pre-production environments is also an important consideration. A high deployment frequency is a tell-tale sign that things are going smooth in the production cycle. Smaller deployments are easier to test and release so higher deployment frequency directly corresponds with higher efficiency. No wonder tech giants such as Amazon and Netflix deploy code thousands of times a day. Amazon has built a deployment engine called Apollo that has deployed more than 50 million deployments in 12 months which is more than one deployment per second. This results in reduced outages and decreased downtimes. 2. Failed deployments Any deployment that causes issues or outages for your users is a failed deployment. Tracking the percentage of deployments that result in negative feedback from the user’s end is an important DevOps metric. The DevOps teams are expected to build quality in the product right from the beginning of the project. The responsibility for ensuring the quality of the software is also disseminated through the entire team and not just centered around the QA. While in an ideal scenario, there should be no failed deployments, that’s often not the case. Tracking the percentage of deployment that results in negative sentiment in the project helps you ascertain the ground level realities and makes you better prepared for such occurrences in the future. Only if you know what is wrong can you formulate a plan to fix it. While a failure rate of 0 is the magic number, less than 5% failed deployments is considered workable. In case the metric consistently shows spike of failed deployments over 10%, the existing process needs to be broken down into smaller segments with mini-deployments. Fixing 5 issues in 100 deployments is any day easier than fixing 50 in 1000 within the same time-frame. 3. Code committed Code committed is a DevOps metric that tracks the number of commits the team makes to the software before it can be deployed into production. This serves as an indicator of the development velocity as well as the code quality. The number of code commits that a team makes has to be within the optimum range defined by the DevOps team. Too many commits may be indicative of low quality or lack of direction in development. Similarly, if the commits are too low, it may be an indicator that the team is too taxed and non-productive. Uncovering the reason behind the variation in code committed is important for maintaining the productivity and project velocity while also ensuring optimal satisfaction within the team members. 4. Lead Time The software development cycle is a continuous process where new code is constantly developed and successfully deployed to production. Lead time for changes in DevOps is the time taken to go from code committed to code successfully running into production. It is an important indicator to determine the efficiency in the existing process and identifying the possible areas of improvement. The lead time and mean time to change (MTTC) result in the DevOps team getting a better hold of the project. By measuring the amount of time passing between its inception and the actual production and deployment, the team’s ability to adapt to change as the project requirements evolve can be computed. 5. Error rate Errors in any software application are inevitable. A few occasional errors aren’t a red flag but keeping track of the error rates and being on the lookout for any unusual spikes is important for the health of your application. A significant rise in error rate is an indicator of inherent quality problems and ongoing performance-related issues. The errors that you encounter can be of two types, bugs and production issues. Bugs are the exceptions in the code discovered after deployment. Production issues, on the other hand, are issues related to database connections and query timeouts. The error rate is calculated as a function of the transactions that result in an error during a particular time window. For a specified time duration, out of a 1000 transactions, if 20 have errors, the error rate is calculated as 20/1000 or 2 percent. A few intermittent errors throughout the application life cycle is a normal occurrence but any unusual spikes that occur need to be looked out for. The process needs to be analysed for bugs and production issues and the exceptions that occur need to be handled concurrently. 6. Mean time to detection Issues happen in every project but how fast you discover the issues is what matters. Having robust application monitoring and optimal coverage would help you find out any issues that happen as quickly as possible. The mean time to detection metric (MTTD) is the amount of time that passes between the beginning of the issue and the time when the issue gets detected and some remedial action is taken. The time to fix the issues is not covered under MTTD. Ideally, the DevOps teams need to strive to keep the MTTD as low as possible (ideally close to zero) i.e the DevOps teams should be able to detect any issues as soon as they occur. There needs to be a proper protocol established and communication channels need to be in place in order to help the team discover the error quickly and respond to its correction in a rapid manner. 7. Mean time to recovery Time to restore service or Mean time to recovery (MTTR) is a critical part of any project. It is the average time taken by the team to repair a failure in the system. It comprises of the time taken from failure detection till the time the project starts operating in the normal manner. Recovery and resilience are key components that determine the market readiness of a project. MTTR is an important DevOps metric because it allows for tracking of complex issues and failures while judging the capability of the team to handle change and bounce back again. The ideal recovery time for the fix to take place should be as low as possible, thus minimizing the overall system downtime. System downtimes and outages though undesirable are unavoidable. This especially runs true in the current development scenario where companies are making the move to the cloud. Designing for failure is a concept that needs to be ingrained right from the start. Even major applications like Facebook & Whatsapp, Twitter, Cloudflare, and Slack are not free of outages. What matters is that the downtime is kept minimal. Mean time to recovery thus becomes critical to realize the time the DevOps teams would need to bring the system back on track. Closing words DevOps isn’t just about tracking metrics, it is primarily about the culture. Organizations that make the transition to DevOps place immense emphasis on one goal-rapid delivery of stable, high-quality software through automation and continuous delivery. Simply having a bunch of numbers in the form of DevOps metrics isn’t going to help you across the line. You need to have a long-term vision combined with valuable insights that the metrics provide. It is only by monitoring these over a period of time and tracking your team’s progress in achieving the goals that you have set can you hope to reap the true benefits that DevOps offers. Author Bio Vinati Kamani writes about emerging technologies and their applications across various industries for Arkenea, a custom software development company and devops consulting company. When she's not on her desk penning down articles or reading up on the recent trends, she can be found traveling to remote places and soaking up different cultural experiences. DevOps engineering and full-stack development – 2 sides of the same agile coin Introducing kdevops, modern devops framework for Linux kernel development Why do IT teams need to transition from DevOps to DevSecOps?
Read more
  • 0
  • 0
  • 7399
Visually different images

article-image-what-are-lightweight-architecture-decision-records
Richard Gall
16 May 2018
4 min read
Save for later

What are lightweight Architecture Decision Records?

Richard Gall
16 May 2018
4 min read
Architecture Decision Records (ADRs) document all the decisions made about software. Every change is recorded in a plain text file sitting inside a version control system (like GitHub). The record should be a complement to the information you can find in a version control system. The ADR provides context and information around every decision made about a piece of software. Why are lightweight Architecture Decision Records needed? We are always making decisions when we build software. Even the simplest piece of software will have required the engineer to take a number of different decisions. Often these decisions aren't obvious. If you've ever had to work with code written by someone else you're probably familiar with this sort of situation. You might have even found that when you come across someone else's code, you need to make a further decision. Either you can simply accept what has been written, and merely surmise and assume why it has been done in the way that it, or you can decide to change it, based on your own judgement. Neither option is ideal. This was what Michael Nygard identified in this blog post in 2011. This was when the concept of Architecture Decision Records first emerged. An ADR should prevent situations like this arising. That makes life easier for you. More importantly, it should mean that every decision is transparent to everyone involved. So, instead of blindly accepting something or immediately changing it, you can simply check the Architecture Decision Record. This will then inform how you proceed. Perhaps you need to make a change. But perhaps you also now understand the context of why something was built in the way it was. Any questions you might have should be explicitly answered in the architecture decision record. So, when you start asking yourself why has she done it like that? instead of floundering helplessly, you can find the answer in the ADR. Why lightweight Architecture Decision Records now? Architecture Decision Records aren't a new thing. Nygard wrote his post all the way back in 2011, after all. But the fact remains that the context from which Nygard was writing in 2011 was very specific. Today it is mainstream. As we've moved away from monolithic architecture towards microservices or serverless, decision making has become more and more important in software engineering. This is a point that is well explained in a blog post here: "The rise of lean development and microservices... complicates the ability to communicate architecture decisions. While these concepts are not inherently opposed to documentation, their processes often fail to effectively capture decision-making processes and reasoning. Another possible inefficiency when recording decisions is bad or out-of-date documentation. It's often a herculean effort to keep large, complex architecture documents current, making maintenance one of the most common barriers to entry." ADRs are, then, a way of managing the complexity in modern software engineering. They are a response to a fundamental need to better communicate decisions. Most importantly, they codify decision-making within the development process. It is when they are lightweight and sit within the project itself that they are most effective. Architecture Decision Record template Architecture Decision Records must follow a template. Not only does that mean everyone is working off the same page, it also means people are actually more likely to document their decisions. Think about it: if you're asked to note how you decide to do something without any guidelines, you're probably not going to do it at all. Below, you'll find an Architecture Decision Record example template. There are a number of different templates you can use, but it's probably best to sit down with your team and agree on what needs to be captured. An Architecture Decision Record example Date Decision makers [who was involved in the decision taken] Category [which part of the architecture does this decision pertain to] Contextual outline [Explain why this decision was made. Outline the key considerations and assumptions at play] Impact consequences [What does this decision mean for the project? What should someone reading this be aware of in terms of future decisions?] As I've already noted, there are a huge number of ways you may want to approach this. Use this as a starting point. Read next Enterprise Architecture Concepts Reactive Programming and the Flux Architecture
Read more
  • 0
  • 0
  • 7399

article-image-why-do-it-teams-need-to-transition-from-devops-to-devsecops
Guest Contributor
13 Jul 2019
8 min read
Save for later

Why do IT teams need to transition from DevOps to DevSecOps?

Guest Contributor
13 Jul 2019
8 min read
Does your team perform security testing during development? If not, why not? Cybercrime is on the rise, and formjacking, ransomware, and IoT attacks have increased alarmingly in the last year. This makes security a priority at every stage of development. In this kind of ominous environment, development teams around the globe should take a more proactive approach to threat detection. This can be done in a number of ways. There are some basic techniques that development teams can use to protect their development environments. But ultimately, what is needed is an integration of threat identification and management into the development process itself. Integrated processes like this are referred to as DevSecOps, and in this guide, we’ll take you through some of the advantages of transitioning to DevSecOps. Protect Your Development Environment First, though, let’s look at some basic measures that can help to protect your development environment. For both individuals and enterprises, online privacy is perhaps the most valuable currency of all. Proxy servers, Tor, and virtual private networks (VPN) have slowly crept into the lexicon of internet users as cost-effective privacy tools to consider if you want to avoid drawing the attention of hackers. But what about enterprises? Should they use the same tools? They would prefer to avoid hackers as well. This answer is more complicated. Encryption and authentication should be addressed early in the development process, especially given the common practice of using open source libraries for app coding. The advanced security protocols that power many popular consumer VPN services make it a good first step to protecting coding and any proprietary technology. Additional controls like using 2-factor authentication and limiting who has access will further protect the development environment and procedures. Beyond these basic measures, though, it is also worth looking in detail at your entire development process and integrating security management at every stage. This is sometimes referred to as integrating DevOps and DevSecOps. DevOps vs. DevSecOps: What's the Difference? DevOps and DevSecOps are not separate entities, but different facets of the development process. Traditionally, DevOps teams work to integrate software development and implementation in order to facilitate the rapid delivery of new business applications. Since this process omits security testing and solutions, many security flaws and vulnerabilities aren't addressed early enough in the development process. With a new approach, DevSecOps, this omission is addressed by automating security-related tasks and integrating controls and functions like composition analysis and configuration management into the development process. Previously, DevSec focused only on automating security code testing, but it is gradually transitioning to incorporate an operations-centric approach. This helps in reconciling two environments that are opposite by nature. DevOps is forward-looking because it's toward rapid deployment, while development security looks backward to analyze and predict future issues. By prioritizing security analysis and automation, teams can still improve delivery speed without the need to retroactively find and deal with threats. Best Practices: How DevSecOps Should Work The goal of current DevSecOps best practices is to implement a shift towards real-time threat detection rather than undergoing a historical analysis. This enables more efficient application development that recognizes and deals with issues as they happen rather than waiting until there's a problem. This can be done by developing a more effective strategy while adopting DevSecOps practices. When all areas of concern are addressed, it results in: Automatic code procurement: Automatic code procurement eliminates the problem of human error and incorporating weak or flawed coding. This benefits developers by allowing vulnerabilities and flaws to be discovered and corrected earlier in the process. Uninterrupted security deployment: Uninterrupted security deployment through the use of automation tools that work in real time. This is done by creating a closed-loop testing and reporting and real-time threat resolution. Leveraged security resources: Leveraged security resources through automation. Using automated DevSecOps typically address areas related to threat assessment, event monitoring, and code security. This frees your IT or security team to focus in other areas, like threat remediation and elimination. There are five areas that need to be addressed in order for DevSecOps to be effective: Code analysis By delivering code in smaller modules, teams are able to identify and address vulnerabilities faster. Management changes Adapting the protocol for changes in management or admins allows users to improve on changes faster as well as enabling security teams to analyze their impact in real time. This eliminates the problem of getting calls about problems with system access after the application is deployed. Compliance Addressing compliance with Payment Card Industry Digital Security Standard (PCI DSS) and the new General Data Protection Regulations (GDPR) earlier, helps prevent audits and heavy fines. It also ensures that you have all of your reporting ready to go in the event of a compliance audit. Automating threat and vulnerability detection Threats evolve and proliferate fast, so security should be agile enough to deal with emerging threats each time coding is updated or altered. Automating threat detection earlier in the development process improves response times considerably. Training programs Comprehensive security response begins with proper IT security training. Developers should craft a training protocol that ensures all personnel who are responsible for security are up to date and on the same page. Organizations should bring security and IT staff into the process sooner. That means advising current team members of current procedures and ensuring that all new staff is thoroughly trained. Finding the Right Tools for DevSecOps Success Does a doctor operate with a chainsaw? Hopefully not. Likewise, all of the above points are nearly impossible to achieve without the right tools to get the job done with precision. What should your DevSec team keep in their toolbox? Automation tools Automation tools provide scripted remediation recommendations for security threats detected. One such tool is Automate DAST, which scans new or modified code against security vulnerabilities listed on the Open Web Application Security Project's (OWASP) list of the most common flaws, such as a SQL injection errors. These are flaws you might have missed during static analysis of your application code. Attack modeling tools Attack modeling tools create models of possible attack matrices and map their implications. There are plenty of attack modeling tools available, but a good one for identifying cloud vulnerabilities is Infection Monkey, which simulates attacks against the parts of your infrastructure that run on major public cloud hosts like Google Cloud, AWS, and Azure, as well as most cloud storage providers like Dropbox and pCloud. Visualization tools Visualization tools are used for evolving, identifying, and sharing findings with the operations team. An example of this type of tool is PortVis, developed by a team led by professor Kwan-Liu Ma at the University of California, Davis. PortVis is designed to display activity by host or port in three different modes: a grid visualization, in which all network activity is displayed on a single grid; a volume visualization, which extends the grid to a three-dimensional volume; and a port visualization, which allows devs to visualize the activity on specific ports over time. Using this tool, different types of attack can be easily distinguished from each other. Alerting tools  Alerting tools prioritize threats and send alerts so that the most hazardous vulnerabilities can be addressed immediately. WhiteSource Bolt, for instance, is a useful tool of this type, designed to improve the security of open source components. It does this by checking these components against known security threats, and providing security alerts to devs. These alerts also auto-generate issues within GitHub. Here, devs can see details such as references for the CVE, its CVSS rating, a suggested fix, and there is even an option to assign the vulnerability to another team member using the milestones feature. The Bottom Line Combining DevOps and DevSec is not a meshing of two separate disciplines, but rather the natural transition of development to a more comprehensive approach that takes security into account earlier in the process, and does it in a more meaningful way. This saves a lot of time and hassles by addressing enterprise security requirements before deployment rather than probing for flaws later. The sooner your team hops on board with DevSecOps, the better. Author Bio Gary Stevens is a front-end developer. He’s a full-time blockchain geek and a volunteer working for the Ethereum foundation as well as an active Github contributor. Is DevOps really that different from Agile? No, says Viktor Farcic [Podcast] Does it make sense to talk about DevOps engineers or DevOps tools? How Visual Studio Code can help bridge the gap between full-stack development and DevOps
Read more
  • 0
  • 0
  • 6503

article-image-8-ways-artificial-intelligence-can-improve-devops
Prasad Ramesh
01 Sep 2018
6 min read
Save for later

8 ways Artificial Intelligence can improve DevOps

Prasad Ramesh
01 Sep 2018
6 min read
DevOps combines development and operations in an agile manner. ITOps refers to network infrastructure, computer operations, and device management. AIOps is artificial intelligence applied to ITOps, a term coined by Gartner. Makes us wonder what AI applied to DevOps would look like. Currently, there are some problem areas in DevOps that mainly revolve around data. Namely, accessing the large pool of data, taking actions on it, managing alerts etc. Moreover, there are errors caused by human intervention. AI works heavily with data and can help improve DevOps in numerous ways. Before we get into how AI can improve DevOps, let’s take a look at some of the problem areas in DevOps today. The trouble with DevOps Human errors: When testing or deployment is performed manually and there is an error, it is hard to repeat and fix. Many a time, the software development is outsourced in companies. In such cases, there is lack of coordination between the dev and ops teams. Environment inconsistency: Software functionality breaks when the code moves to different environments as each environment has different configurations. Teams can run around wasting a lot of time due to bugs when the software works fine on one environment but not on the other. Change management: Many companies have change management processes well in place, but they are outdated for DevOps. The time taken for reviews, passing a new module etc is manual and proves to be a bottleneck. Changes happen frequently in DevOps and the functioning suffers due to old processes. Monitoring: Monitoring is key to ensure smooth functioning in Agile. Many companies do not have the expertise to monitor the pipeline and infrastructure. Moreover monitoring only the infrastructure is not enough, there also needs to be monitoring of application performance, solutions need to be logged and analytics need to be tracked. Now let’s take a look at 8 ways AI can improve DevOps given the above context. 1. Better data access One of the most critical issues faced by DevOps teams is the lack of unregulated access to data. There is also a large amount of data, while the teams rarely view all of the data and focus on the outliers. The outliers only work as an indicator but do not give robust information. Artificial intelligence can compile and organize data from multiple sources for repeated use. Organized data is much easier to access and understand than heaps of raw data. This will help in predictive analysis and eventually a better decision making process. This is very important and enables many other ways listed below. 2. Superior implementation efficiency Artificially intelligent systems can work with minimal or no human intervention. Currently, a rules-based environment managed by humans is followed in DevOps teams. AI can transform this into self governed systems to greatly improve operational efficiency. There are limitations to the volume and complexity of analysis a human can perform. Given the large volumes of data to be analyzed and processed, AI systems being good at it, can set optimal rules to maximize operational efficiencies. 3. Root cause analysis Conducting root cause analysis is very important to fix an issue permanently. Not getting to the root cause allows for the cause to persist and affect other areas further down the line. Often, engineers don’t investigate failures in depth and are more focused on getting the release out. This is not surprising given the limited amount of time they have to work with. If fixing a superficial area gets things working, the root cause is not found. AI can take all data into account and see patterns between activity and cause to find the root cause of failure. 4 Automation Complete automation is a problem in DevOps, many tasks in DevOps are routine and need to be done by humans. An AI model can automate these repeatable tasks and speed up the process significantly. A well-trained model increases the scope of complexity of the tasks that can be automated by machines. AI can help achieve least human intervention so that developers can focus on more complex interactive problems. Complete automation also allows the errors to be reproduced and fixed promptly. 5 Reduce Operational Complexity AI can be used to simplify operations by providing a unified view. An engineer can view all the alerts and relevant data produced by the tools in a single place. This improves the current scenario where engineers have to switch between different tools to manually analyze and correlate data. Alert prioritization, root cause analysis, evaluating unusual behavior are complex time consuming tasks that depend on data. An organized singular view can greatly benefit in looking up data when required. “AI and machine learning makes it possible to get a high-level view of the tool-chain, but at the same time zoom in when it is required.” -SignifAI 6 Predicting failures A critical failure in a particular tool/area in DevOps can cripple the process and delay cycles. With enough data, machine learning models can predict when an error can occur. This goes beyond simple predictions. If an occurred fault is known to produce certain readings, AI can read patterns and predict the signs failure. AI can see indicators that humans may not be able to. As such early failure prediction and notification enable the team to fix it before it can affect the software development life cycle (SDLC). 7 Optimizing a specific metric AI can work towards solutions where the uptime is maximized. An adaptive machine learning system can learn how the system works and improve it. Improving could mean tweaking a specific metric in the workflow for optimized performance. Configurations can be changed by AI for optimal performance as required during different production phases. Real-time analysis plays a big part in this. 8 Managing Alerts DevOps systems can be flooded with alerts which are hard for humans to read and act upon. AI can analyze these alerts in real-time and categorize them. Assigning priority to alerts helps teams towards work on fixing them rather than going through a long list of alerts. The alerts can simply be tagged by a common ID for specific areas or AI can be trained for classifying good and bad alerts. Prioritizing alerts in such a way that flaws are shown first to be fixed will help smooth functioning. Conclusion As we saw, most of these areas depend heavily on data. So getting the system right to enhance data accessibility is the first step to take. Predictions work better when data is organized, performing root cause analysis is also easier. Automation can repeat mundane tasks and allow engineers to focus on more interactive problems that machines cannot handle. With machine learning, the overall operation efficiency, simplicity, and speed can be improved for smooth functioning of DevOps teams. Why Agile, DevOps and Continuous Integration are here to stay: Interview with Nikhil Pathania, DevOps practitioner Top 7 DevOps tools in 2018 GitLab’s new DevOps solution
Read more
  • 0
  • 0
  • 5108
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at £15.99/month. Cancel anytime
article-image-why-microservices-and-devops-are-match-made-heaven
Erik Kappelman
12 Oct 2017
4 min read
Save for later

Why microservices and DevOps are a match made in heaven

Erik Kappelman
12 Oct 2017
4 min read
What are microservices? In terms of software, ‘services’ could be thought of as little chunks of functionality. Services are a part of service-oriented architecture (SOA). Services are stateless, adhere to a contract (shared standards), are autonomous, relatively granular, and should be a ‘black-box’ for the user. Microservices are a logical extension of services. Microservices are services that perform only one function. This matches the Unix philosophy, “Do one thing, and do it well.” But who cares? And what about DevOps? Well, although the title is a cliche, DevOps and microservices based architecture are absolutely a match made in heaven. Following the philosophy of fully explaining terms, let's talk a bit about DevOps. What is DevOps? DevOps, which come from the words "development operations," is a process that is used to create software. DevOps is not one specific philosophy or process, there are many variants, but there are some shared features across most of the variants. DevOps advocates for a continuous development process where as many elements of this process are as automated as possible. Each iteration of a product is coded, built, tested, packaged, and released, and then monitored. This is referred to as the DevOps toolchain. When there is a need or desire to upgrade or change functionality or the way a product is designed, the process begins again. The idea is that DevOps should run in a circular fashion, always upgrading and always getting better. There are myriad tools in use right now within various flavors of DevOps. These tool are designed to meld with the DevOps tool chain and have revolutionized the development process for many developers and companies. Why microservices and DevOps go together You should already see why microservices and DevOps go together so well. DevOps calls for continuous monitoring, testing, and deployment of software. Microservices are inherently modular, because they are intended to perform a single function. Software that is modular easily fits into the DevOps structure. Incremental changes can be made to parts of a project, perhaps a single microservice. If the service contracts and control mechanisms are properly created, a single microservice should be able to be easily upgraded, built, tested, deployed and monitored without sending a cascading wave of bugs through adjacent services. DevOps really doesn’t make much sense outside of a structure like this. If your software is designed as a behemoth interconnected, interdependent ball of wax, changing part of the functionality will ‘break’ everything. This means that as changes or upgrades to a software are made, almost every change, no matter how big or small, will trigger what amounts to an almost full rewrite, or upgrade of the software in question. When applied to this kind of project, most DevOps processes would actually hinder the development process instead of helping. When projects are modularized at a relatively granular level, such as when a project is employing a microservice based structure, DevOps expedites delivery time and quality simultaneously. It should be noted that both a microservice architecture and DevOps processes are not tied to any specific tools or languages. These are philosophies for development and could be applied many different ways. That being said, there are many continuous integration and deployment tools, as well as, many different automation tools that are designed for use within a DevOps framework. Criticisms of microservices There are some criticisms of the microservice structure. One criticism is that using microservices does not get rid of the complexities of a traditional program. Those complexities are just moved onto the network that the services are using to communicate. Stress to the network is another criticism of the microservice architecture. This is because the service architecture distributes the elements of a program or process around a network in various places. In order for these services to perform cohesive functions, they must utilize the network to communicate. Depending on how many services make up a program or process, this could translate into significant network activity, which then creates problems of its own. Another criticism is that microservices can sometimes become, so called, ‘nanoservices.’ This is a service that performs a function so small that cost of the service actually outweighs the utility of the service. These criticisms should be kept in mind, but, in my opinion, they don’t amount to enough to impact the usual functionality of microservices in a DevOps environment. Using microservices in the DevOps process helps fully realize the potential of continuous integration, testing a deployment promised by DevOps. These tools combined can optimize computing in a manner that should be utilized during development whenever possible.
Read more
  • 0
  • 0
  • 5058

article-image-getting-started-devops
Michael Herndon
10 Feb 2016
7 min read
Save for later

Getting Started with DevOps

Michael Herndon
10 Feb 2016
7 min read
DevOps requires you to know many facets of people and technology. If you're interested in starting your journey into the world of DevOps, then take the time to know what you are getting yourself into, be ready to put in some work, and be ready to push out of your comfort zone. Know What You're Getting Yourself Into Working in a DevOps job where you're responsible for both coding and operational tasks means that you need to be able to shift mental gears. Mental context switching comes at a cost. You need to be able to pull yourself out of one mindset and switch to another, and you need to be able to prioritize. Accept your limitations and know when it's prudent to request more resources to handle the load. The amount of context switching will vary depending on the business. Let's say that you join a startup, and you're the only DevOps person on the team. In this scenario, you're most likely the operations team and still responsible for some coding tasks as well. This means that you need to tackle operations tasks as they come in. In this instance, Scrum and Agile will only carry you so far, you'll have to take more of a GTD approach. If you come from a development background, you will be tempted to put coding first as you have deadlines. However, if you are the operations team, then operations must come first. When you become a part of the operations team, employees at your business are now your customers too. Some days you can churn out code, other days are going to be an onslaught of important, time-sensitive requests. At the business that I currently work for, I took on the DevOps role so that other developers could focus on coding. One of the developers that I work with has exceptional code output. However, operational tasks were impeding their productivity. It was an obvious choice for me to jump in and take over the operational tasks so that the other developer could focus his efforts on bringing new features to customers. It's simply good business. Ego can get in the way of good business and DevOps. Leave your ego at home. In a bigger business, you may have a DevOps team where there is more breathing room to focus on things that you're more interested in, whether it's more coding or working with systems. Emergencies happen. When an emergency arises, you need to be able to calmly assess the situation, avoid the blame game, and provide solutions. Don't react. Respond. If you're too excitable or easily get caught up in the emotions of a given situation, DevOps may be your trial of fire. Work on pulling yourself outside of a situation so that you can see the whole picture and work towards solving the problem. Never play the blame game. Be the person who gets things done. Dive Into DevOps Start small. Taking on too much will overwhelm you and stifle progress. After you’ve done a few iterations of taking small steps, you'll be further along the journey than you realize. "It's a dangerous business, Frodo, going out your door. You step onto the road, and if you don't keep your feet, there's no knowing where you might be swept off to.” - Bilbo Baggins. If you're a developer, take one of your side projects and set up continuous delivery for the project. I would keep it simple and use something like Travis CI or AppVeyor and have your final output published somewhere. If you're using something like node, you could set up nightly builds for NPM. If its .NET you could use a service like MyGet. The second thing I would do as a developer is to focus on learning SSH, security access, and scheduled tasks. One of the things I've seen developers struggle with is locking down systems, so it's worth taking the time to dive into user access permissions. If you're on Windows, learn the windows task scheduler. If you're on Linux, learn to setup cron jobs. If you're from the operations and systems side of things, pick a scripting language that suits your needs. If you're working for a company that uses Microsoft technology, I'd suggest that you learn the Powershell scripting language and a language that compiles to .NET like C# or F#. If you're using open source technologies, I'd suggest learning bash and a language like Ruby or Python. Puppet and Chef use Ruby. Salt Stack uses Python. Build a simple web application with the language of your choice. That should give you enough familiarity with a language for you to start creating scripts that automate tasks. Read into DevOps books like Continuous Delivery or Continuous Delivery and DevOps Quickstart Guid. Expand your knowledge. Explore tools. Work on your intercommunication skills. Create a list of tasks that you wish to automate. Then create a habit out of reducing that list. Build A Habit Out Of Automating Infrastructure. Make it a habit to find time to automate your infrastructure while continuing to support your business. It's rare to get into a position that only focuses on automating infrastructure constantly as one's sole job, so it's important to be able to carve out time to remove mundane work so that you can focus your time and value on tasks that can't be automated. A habit loop is made up of three things. A cue, a routine, and a reward. For example, at 2pm your alarm goes off (cue). You go for a short run (routine). You feel awake and refreshed (reward). Design a cue that works for you. For example, every Friday at 2pm you could switch gears to work on automation. Spend some time on automating a task or infrastructure need (Routine), then find a reward that suits your lifestyle. A reward could be having a treat on Friday to celebrate all the hard work for the week or going home early (if your business permits this). Maybe learning something new is the reward and in that case, you spend a little time each week with a new DevOps related technology. Once you've removed some of the repetitive tasks that waste time, then you'll find yourself with enough time to take on bigger automation projects that seemed impossible to get to before. Repeat this process ad infinitum (To infinity and beyond). Lastly, Always Write and Communicate Whether you plan on going into DevOps or not, the ability to communicate will set you apart from others in your field. In DevOps, communication becomes a necessity because the value you provide may not always be apparent to everyone around you. Furthermore, you need to be able to resolve group conflicts, persuasively elicit buy-in, and provide a vision that people can follow. Always strive to improve your communication skills. Read books. Write. Work on your non-verbal communication skills. Non-verbal communication accounts for 93% of communication. It's worth knowing that messages that your body language sends could be preventing you from getting your ideas across. Communicating in a plain language to the lowest common denominator of your intended audience is your goal. People that are technical and nontechnical need to understand problems, solutions, and the value that you are giving them. Learn to use the right adjectives to paint bright illustrations in the minds of your readers to help them conceptualize hard-to-understand topics. The ability to persuade with writing is almost a lost art. It is a skill that transcends careers, disciplines, and fields of study. Used correctly, you can provide vision to guide your business into becoming a lean competitor that provides exceptional value to customers. At the end of the day, DevOps exists so that you can provide exceptional value to customers. Let your words guide and inspire the people around you. Off You Go All this is easier said than done. It takes time, practice, and years of experience. Don't be discouraged and don't give up. Instead, find things that light up your passion and focus on taking small incremental steps that allow you to win. You'll be there before you know it. About the author Michael Herndon is the head of DevOps at Solovis, creator of badmishka.co, and all around mischievous nerdy guy. 
Read more
  • 0
  • 0
  • 4694

article-image-5-things-to-remember-when-implementing-devops
Erik Kappelman
05 Dec 2017
5 min read
Save for later

5 things to remember when implementing DevOps

Erik Kappelman
05 Dec 2017
5 min read
DevOps is a much more realistic and efficient way to organize the creation and delivery of technology solutions to customers. But like practically everything else in the world of technology, DevOps has become a buzzword and is often thrown around willy-nilly. Let's cut through the fog and highlight concrete steps that will help an organization implement DevOps. DevOps is about bringing your development and operations teams together This might seem like a no-brainer, but DevOps is often explained in terms of tools rather than techniques or philosophical paradigms. At its core, DevOps is about uniting developers and operators, getting these groups to effectively communicate with each other, and then using this new communication to streamline various processes. This could include a physical change to the layout of an organization's workspace. It's incredible the changes that can happen just by changing the seating arrangements in an office. If you have a very large organization, development and operations might be in separate buildings, separate campuses, or even separate cities. While the efficacy of web-based communication has increased dramatically over the last few years, there is still no replacement for face-to-face daily human interactions. Putting developers and operators in the same physical space is going to increase the rate of adoption and efficacy of various DevOps tools and techniques. DevOps is all about updates Updates can be aimed at expanding functionality or simply fixing or streamlining existing processes. Updates present a couple of problems to developers and operators. First, we need to keep everybody working on the same codebase. This can be achieved by using a variety of continuous integration tools. The goal of continuous integration is to make sure that changes and updates to the codebase are implemented as close to continuously as possible. This helps avoid merging problems that can result from multiple developers working on the same codebase at the same time. Second, these updates need to be integrated into the final product. For this task, DevOps applies the concept of continuous deployment. This is essentially the same thing as continuous integration, but has to do with deploying changes to the codebase as opposed to integrating changes to the codebase. In terms of importance to the DevOps process, continues integration and deployment are equally important. Moving updates from a developer's workspace to the codebase to production should be seamless, smooth, and continuous. Implementing a microservices structure is imperative for an effective DevOps approach Microservices are an extension of the service-based structure. Basically a service structure calls for modulation of a solution’s codebase into units based on functionality. Microservices takes this a step further by implementing what consists of a service-based structure in which each service performs a single task. While a service-based or microservice structure is not required for implementation of DevOps, I have no idea why you wouldn’t because microservices lend themselves so well with DevOps. One way to think of a microservice structure is by imagining an ant hill in which all of the worker ants are microservices. Each ant has a specific set of abilities and is given a task from the queen. The ant then autonomously performs this task, usually gathering food, along with all of its ant friends. Remove a single ant from the pile, nothing really happens. Replace an old ant with a new ant, nothing really happens. The metaphor isn’t perfect, but it strikes at the heart of why microservices are valuable in a DevOps framework. If we need to be continuously integrating and deploying, shouldn’t we try to impact the codebase as directly as we can? When microservices are in use, changes can be made at an extremely granular level. This allows for continuous integration and deployment to really shine. Monitor your DevOps solutions In order to continuously deploy, applications need to also be continuously monitored. This allows for problems to be identified quickly. When problems are quickly identified, it tends to reduce the total effort required to fix the problems. Your application should obviously be monitored from the perspective of whether or not it is working as it currently should, but users need to be able to give feedback on the application’s functionality. When reasonable, this feedback can then be integrated into the application somehow. Monitoring user feedback tends to fall by the wayside when discussing DevOps. It shouldn’t. The whole point of the DevOps process is to improve the user experience. If you’re not getting feedback from users in a timely manner, it's kind of impossible to improve their experience. Keep it loose and experiment Part of the beauty of DevOps is that it can allow for more experimentation than other development frameworks. When microservices and continuous integration and deployment are being fully utilized, it's fairly easy to incorporate experimental changes to applications. If an experiment fails, or doesn’t do exactly what was expected, it can be removed just as easily. Basically, remember why DevOps is being used and really try to get the most out of it. DevOps can be complicated. Boiling anything down to five steps can be difficult but if you act on these five fundamental principles you will be well on your way to putting DevOps into practice. And while its fun to talk about what DevOps is and isn't, ultimately that's the whole point - to actually uncover a better way to work with others.
Read more
  • 0
  • 0
  • 3908

article-image-6-new-ebooks-for-programmers-to-watch-out-for-in-march
Richard Gall
20 Feb 2019
6 min read
Save for later

6 new eBooks for programmers to watch out for in March

Richard Gall
20 Feb 2019
6 min read
The biggest challenge for anyone working in tech is that you need multiple sets of eyes. Yes, you need to commit to regular, almost continuous learning, but you also need to look forward to what’s coming next. From slowly emerging trends that might not even come to fruition (we’re looking at you DataOps), to version updates and product releases, for tech professionals the horizon always looms and shapes the present. But it’s not just about the big trends or releases that get coverage - it’s also about planning your next (career) move, or even your next mini-project. That could be learning a new language (not necessarily new, but one you haven’t yet got round to learning), trying a new paradigm, exploring a new library, or getting to grips with cloud native approaches to software development. This sort of learning is easy to overlook but it is one that's vital to any developers' development. While the Packt library has a wealth of content for you to dig your proverbial claws into, if you’re looking forward, Packt has got some new titles available in pre-order that could help you plan your learning for the months to come. We’ve put together a list of some of our own top picks of our pre-order titles available this month, due to be released late February or March. Take a look and take some time to consider your next learning journey... Hands-on deep learning with PyTorch TensorFlow might have set the pace when it comes to artificial intelligence, but PyTorch is giving it a run for its money. It’s impossible to describe one as ‘better’ than the other - ultimately they both have valid use cases, and can both help you do some pretty impressive things with data. Read next: Can a production ready Pytorch 1.0 give TensorFlow a tough time? The key difference is really in the level of abstraction and the learning curve - TensorFlow is more like a library, which gives you more control, but also makes things a little more difficult. PyTorch, then, is a great place to start if you already know some Python and want to try your hand at deep learning. Or, if you have already worked with TensorFlow and simply want to explore new options, PyTorch is the obvious next step. Order Hands On Deep learning with PyTorch here. Hands-on DevOps for Architects Distributed systems have made the software architect role incredibly valuable. This person is not only responsible for deciding what should be developed and deployed, but also the means through which it should be done and maintained. But it’s also made the question of architecture relevant to just about everyone that builds and manages software. That’s why Hands on DevOps for Architects is such an important book for 2019. It isn’t just for those who typically describe themselves as software architects - it’s for anyone interested in infrastructure, and how things are put together, and be made to be more reliable, scalable and secure. With site reliability engineering finding increasing usage outside of Silicon Valley, this book could be an important piece in the next step in your career. Order Hands-on DevOps for Architects here. Hands-on Full stack development with Go Go has been cursed with a hell of a lot of hype. This is a shame - it means it’s easy to dismiss as a fad or fashion that will quickly disappear. In truth, Go’s popularity is only going to grow as more people experience, its speed and flexibility. Indeed, in today’s full-stack, cloud native world, Go is only going to go from strength to strength. In Hands-on Full Stack Development with Go you’ll not only get to grips with the fundamentals of Go, you’ll also learn how to build a complete full stack application built on microservices, using tools such as Gin and ReactJS. Order Hands-on Full Stack Development with Go here. C++ Fundamentals C++ is a language that often gets a bad rap. You don’t have to search the internet that deeply to find someone telling you that there’s no point learning C++ right now. And while it’s true that C++ might not be as eye-catching as languages like, say, Go or Rust, it’s nevertheless still a language that still plays a very important role in the software engineering landscape. If you want to build performance intensive apps for desktop C++ is likely going to be your go-to language. Read next: Will Rust replace C++? One of the sticks that’s often used to beat C++ is that it’s a fairly complex language to learn. But rather than being a reason not to learn it, if anything the challenge it presents to even relatively experienced developers is one well worth taking on. At a time when many aspects of software development seem to be getting easier, as new layers of abstraction remove problems we previously might have had to contend with, C++ bucks that trend, forcing you to take a very different approach. And although this approach might not be one many developers want to face, if you want to strengthen your skillset, C++ could certainly be a valuable language to learn. The stats don’t lie - C++ is placed 4th on the TIOBE index (as of February 2019), beating JavaScript, and commands a considerably high salary - indeed.com data from 2018 suggests that C++ was the second highest earning programming language in the U.S., after Python, with a salary of $115K. If you want to give C++ a serious go, then C++ Fundamentals could be a great place to begin. Order C++ Fundamentals here. Data Wrangling with Python & Data Visualization with Python Finally, we’re grouping two books together - Data Wrangling with Python and Data Visualization with Python. This is because they both help you to really dig deep into Python’s power, and better understand how it has grown to become the definitive language of data. Of course, R might have something to say about this - but it’s a fact the over the last 12-18 months Python has really grown in popularity in a way that R has been unable to match. So, if you’re new to any aspect of the data science and analysis pipeline, or you’ve used R and you’re now looking for a faster, more flexible alternative, both titles could offer you the insight and guidance you need. Order Data Wrangling with Python here. Order Data Visualization with Python here.
Read more
  • 0
  • 0
  • 3877
article-image-tao-devops
Joakim Verona
21 Apr 2016
4 min read
Save for later

The Tao of DevOps

Joakim Verona
21 Apr 2016
4 min read
What is Tao? It's a complex idea - but one method of thinking of it is to find the natural way of doing things, and then making sure you do things that way. It is intuitive knowing, an approach that can't be grasped just in principle but only through putting them into practice in daily life. The principles of Tao can be applied to almost anything. We've seen the Tao of Physics, the Tao of Pooh, even the Tao of Dating. Tao principles apply just as well to DevOps - because who can know fully what DevOps actually is? It is an idiom as hard to define as "quality" - and good DevOps is closely tied to the good quality of a software product. Want a simple example? A recipe for cooking a dish normally starts with a list of ingredients, because that's the most efficient way of describing cooking. When making a simple desert, the recipe starts with a title: "Strawberries And Cream". Already we can infer a number of steps in making the dish. We must acquire strawberries and cream, and probably put them together on a plate. The recipe will continue to describe the preparation of the dish in more detail, but even if we read only the heading, we will make few mistakes. So what does this mean for DevOps and product creation? When you are putting things together and building things, the intuitive and natural way to describe the process is to do it declaratively. Describe the "whats" rather than the "hows", and then the "hows" can be inferred. The Tao of Building Software Most build tools have at their core a way of declaring relationships between software components. Here's a Make snippet: a : b cc b And here's an Ant snippet: cc b </build> And a Maven snippet: <dependency> lala </dep> Many people think they wound up in a Lovecraftian hell when they see XML, even though the brackets are perfectly euclidean. But if you squint hard enough, you will see that most tools at their core describe dependency trees. The Apache Maven tool is well-known, and very explicit about the declarative approach. So, let's focus on that and try to find the Tao of Maven. When we are having a good day with Maven and we are following the ways of Tao, we describe what type of software artifact we want to build, and the components we are going to use to put it together. That's all. The concrete building steps are inferred. Of course, since life is interesting and complex, we will often encounter situations were the way of Tao eludes us. Consider this example: type:pom antcall tar together ../*/target/*.jar Although abbreviated, I have observed this antipattern several times in real world projects. Whats wrong with it? After all, this antipattern occurs because the alternatives are non-obvious, or more verbose. You might think it's fine. But first of all, notice that we are not describing whats (at least not in a way that Maven can interpret). We are describing hows. Fixing this will probably require a lot of work, but any larger build will ensure that it eventually becomes mandatory to find a fix. Pause (perhaps in your Zen Garden) and consider that dependency trees are already described within the code of most programming languages. Isn't the "import" statement of Java, Python and the like enough? In theory this is adequate - if we disregard the dynamism afforded by Java, where it is possible to construct a class name as a string and load it. In practice, there are a lot of different artifact types that might contain various resources. Even so, it is clearly possible in theory to package all required code if the language just supported it. Jsr 294 - "modularity in Java" - is an effort to provide such support at the language level. In Summary So what have we learned? The two most important lessons are simple - when building software (or indeed, any product), focus on the "Whats" before the "Hows". And when you're empowered with building tools such as Maven, make sure you work with the tool rather than around it. About the Author Joakim Verona is a consultant with a specialty in Continuous Delivery and DevOps, and the author of Practical DevOps. He has worked as the lead implementer of complex multilayered systems such as web systems, multimedia systems, and mixed software/hardware systems. His wide-ranging technical interests led him to the emerging field of DevOps in 2004, where he has stayed ever since. Joakim completed his masters in computer science at Linköping Institute of Technology. He is a certified Scrum master, Scrum product owner, and Java professional.
Read more
  • 0
  • 0
  • 3850

article-image-top-7-devops-tools-2018
Vijin Boricha
25 Apr 2018
5 min read
Save for later

Top 7 DevOps tools in 2018

Vijin Boricha
25 Apr 2018
5 min read
DevOps is a methodology or a philosophy. It's a way of improving the friction between development and operations. But while we could talk about what DevOps is and isn't for decades (and people probably will), there are a range of DevOps tools that are integral to putting its principles into practice. So, while it's true that adopting a DevOps mindset will make the way you build software more efficiently, it's pretty hard to put DevOps into practice without the right tools. Let's take a look at some of the best DevOps tools out there in 2018. You might not use all of them, but you're sure to find something useful in at least one of them - probably a combination of them. DevOps tools that help put the DevOps mindset into practice Docker Docker is a software that performs OS-level virtualization, also known as containerization. Docker uses containers to package up all the requirements and dependencies of an application making it shippable to on-premises devices, data center VMs or even Cloud. It was developed by Docker, Inc, back in 2013 with complete support for Linux and limited support for Windows. By 2016 Microsoft had already announced integration of Docker with Windows 10 and Windows Server 2016. As a result, Docker enables developers to easily pack, ship, and run any application as a lightweight, portable container, which can run virtually anywhere. Jenkins Jenkins is an open source continuous integration server in Java. When it comes to integrating DevOps processes, continuous integration plays the most important part and this is where Jenkins comes into picture. It was released in 2011 to help developers integrate DevOps stages with a variety of in-built plugins. Jenkins is one of those prominent tools that helps developers find and solve code bugs quickly and also automates the testing of their builds. Ansible Ansible was developed by the Ansible community back in 2012 to automate network configuration, software provisioning, development environment, and application deployment. In a nutshell, it is responsible for delivering simple IT automation that puts a stop to repetitive task. This eventually helps DevOps teams to focus on more strategic work. Ansible is completely agentless where in it uses syntax written in YAML and follows a master-slave architecture. Puppet Puppet is an open source software configuration management tool written in C++ and Closure. It was released back in 2005 licensed under the GNU General Public License (GPL) until version 2.7.0. Later it was licensed under Apache License 2.0. Puppet is an open-source configuration management tool used to deploy, configure and manage servers. It uses a Master Slave architecture where the Master and Slave use secure encrypted channels to communicate. Puppet runs on any platform that supports Ruby, for example CentOS, Windows Server, Oracle Enterprise Linux, Microsoft, and more. Git Git is a version control system that allows you to track file changes which in turn helps in coordinating with team members working on those files. Git was released in 2005 where it was majorly used for Linux Kernel development. Its primary use case is source code management in software development. Git is a distributed version control system where every contributor can create a local repository by cloning the entire main repository. The main advantage of this system is that contributors can update their local repository without any interference to the main repository. Vagrant Vagrant is an open source tool released in 2010 by HashiCorp and it used to build and maintain virtual environments. It provides a simple command-line interface to manage virtual machines with custom configurations so that DevOps team members have an identical development environment. While Vagrant is written in Ruby, it supports development in all major languages. It works seamlessly on Mac, Windows, and all popular Linux distributions. If you are considering building and configuring a portable, scalable, and lightweight environment, Vagrant is your solution. Chef Chef is a powerful configuration management tool used to transform infrastructure into code. It was released back in 2009 and is written in Ruby and Erlang. Chef uses a pure-ruby domain specific language (DSL) to write system configuration 'recipes' which are put together as cookbook for easier management. Unlike Puppet’s master-slave architecture Chef uses a client-server architecture. Chef supports multiple cloud environments which makes it easy for infrastructures to manage data centers and maintain high availability. Think carefully about the DevOps tools you use To increase efficiency and productivity, the right tool is key. In a fast-paced world where DevOps engineers and their entire teams do all the extensive work, it is really hard to find the right tool that fits your environment perfectly. Your best bet is to choose your tool based on the methodology you are going to adopt. Before making a hard decision it is worth taking a step back to analyze what would work best to increase your team’s productivity and efficiency. The above tools have been shortlisted based on current market adoptions. We hope you find a tool in this list that eventually saves a lot of your time in choosing the right one. Learning resources Here is a small selection of books and videos from our Devops portfolio to help you and your team master the DevOps tools that fit your requirements: Mastering Docker (Second Edition) Mastering DevOps [Video] Mastering Docker [Video] Ansible 2 for Beginners [Video] Learning Continuous Integration with Jenkins (Second Edition) Mastering Ansible (Second Edition) Puppet 5 Beginner's Guide (Third Edition) Effective DevOps with AWS
Read more
  • 0
  • 0
  • 3824

article-image-docker-has-turned-us-all-sysadmins
Richard Gall
29 Dec 2015
5 min read
Save for later

Docker has turned us all into sysadmins

Richard Gall
29 Dec 2015
5 min read
Docker has been one of my favorite software stories of the last couple of years. On the face of it, it should be pretty boring. Containerization isn't, after all, as revolutionary as most of the hype around Docker would have you believe. What's actually happened is that Docker has refined the concept, and found a really clear way of communicating the idea. Deploying applications and managing your infrastructure doesn't sound immediately 'sexy'. After all, it was data scientist that was proclaimed the sexiest job of the twenty-first century; sysadmins hardly got an honorable mention. But Docker has, amazingly, changed all that. It's started to make sysadmins sexy… And why should we be surprised? If a SysAdmin's role is all about delivering software, managing infrastructures, maintaining it and making sure it performs for the people using it, it's vital (if not obviously sexy). A decade ago, when software architectures were apparently immutable and much more rigid, the idea of administration wasn't quite so crucial. But now, in a world of mobile and cloud, where technology is about mobility as much as it is about stability (in the past, tech glued us to desktops; now it's encouraging us to work in the park), sysadmins are crucial. Tools like Docker are crucial to this. By letting us isolate and package applications in their component pieces we can start using software in a way that's infinitely more agile and efficient. Where once the focus was on making sure software was simply 'there,' waiting for us to use it, it's now something that actively invites invention, reconfiguration and exploration. Docker's importance to the 'API economy' (which you're going to be hearing a lot more about in 2016) only serves to underline its significance to modern software. Not only does it provide 'a convenient way to package API-provisioning applications, but it also 'makes the composition of API-providing applications more programmatic', as this article on InfoWorld has it. Essentially, it's a tool that unlocks and spreads value. Can we, then, say the same about the humble sysadmin? Well yes – it's clear that administering systems is no longer a matter of simple organization, a question of robust management, but is a business critical role that can be the difference between success and failure. However, what this paradigm shift really means is that we've all become SysAdmins. Whatever role we're working in, we're deeply conscious of the importance of delivery and collaboration. It's not something we expect other people to do, it's something that we know is crucial. And it's for that reason that I love Docker – it's being used across the tech world, a gravitational pull bringing together disparate job roles in a way that's going to become more and more prominent over the next 12 months. Let's take a look at just two of the areas in which Docker is going to have a huge impact. Docker in web development Web development is one field where Docker has already taken hold. It's changing the typical web development workflow, arguably making web developers more productive. If you build in a single container on your PC, that container can then be deployed and managed anywhere. It also gives you options: you can build different services in different containers, or you can build a full-stack application in a single container (although Docker purists might say you shouldn't). In a nutshell, it's this ability to separate an application into its component parts that underlines why microservices are fundamental to the API economy. It means different 'bits' – the services – can be used and shared between different organizations. Fundamentally though, Docker bridges the difficult gap between development and deployment. Instead of having to worry about what happens once it has been deployed, when you build inside a container you can be confident that you know it's going to work – wherever you deploy it. With Docker, delivering your product is easier (essentially, it helps developers manage the 'ops' bit of DevOps, in a simpler way than tackling the methodology in full); which means you can focus on the specific process of development and optimizing your products. Docker in data science Docker's place within data science isn't quite as clearly defined or fully realised as it is in web development. But it's easy to see why it would be so useful to anyone working with data. What I like is that with Docker, you really get back to the 'science' of data science – it's the software version of working in a sterile and controlled environment. This post provides a great insight on just how great Docker is for data – admittedly it wasn't something I had thought that much about, but once you do, it's clear just how simple it is. As the author of puts it: 'You can package up a model in a Docker container, go have that run on some data and return some results - quickly. If you change the model, you can know that other people will be able to replicate the results because of the containerization of the model.' Wherever Docker rears its head, it's clearly a tool that can be used by everyone. However you identify – web developer, data scientist, or anything else for that matter – it's worth exploring and learning how to apply Docker to your problems and projects. Indeed, the huge range of Docker use cases is possibly one of the main reasons that Docker is such an impressive story – the fact that there are thousands of other stories all circulating around it. Maybe it's time to try it and find out what it can do for you?
Read more
  • 0
  • 0
  • 3640
article-image-5-common-misconceptions-about-devops
Hari Vignesh
08 Aug 2017
4 min read
Save for later

5 common misconceptions about DevOps

Hari Vignesh
08 Aug 2017
4 min read
DevOps is a transformative operational concept designed to help development and production teams coordinate operations more effectively. In theory, DevOps is designed to be focused on cultural changes that stimulate collaboration and efficiency, but the focus often ends up being placed on everyday tasks, distracting organizations from the core principles — and values  — that DevOps is built around. This has led to many technology professionals developing misconceptions about DevOps because they have been part of deployments,or know people who have been involved in DevOps plans, who have strayed from the core principles of the movement. Let’s discuss a few of the misconceptions. We need to employ ‘DevOps’ DevOps is not a job title or a specific role. Your organization probably already has Senior Systems guys and Senior Developers who have many of the traits needed to work in the way that DevOps promotes. With a bit of effort and help from outside consultants, mailing lists or conferences, you might easily be able to restructure your business around the principles you propose without employing new people — or losing old ones. Again, there is no such thing as a DevOp person. It is not a job title. Feel free to advertise for people who work with a DevOps mentality, but there are no DevOps job titles. Oftentimes, good people to consider in the role as a bridge between teams are generalists, architects, and Senior Systems Administrators and Developers. Many companies in the past decade have employed a number of specialists — a DNS Administrator is not unheard of. You can still have these roles, but you’ll need some generalists who have a good background in multiple technologies. They should be able to champion the values of simple systems over complex ones, and begin establishing automation and cooperation between teams. Adopting tools makes you DevOps Some who have recently caught wind of the DevOps movement believe they can instantly achieve this nirvana of software delivery simply by following a checklist of tools to implement within their team. Their assumption is, that if they purchase and implement a configuration management tool like Chef, a monitoring service like Librato, or an incident management platform like VictorOps, then they’ve achieved DevOps! But that's not quite true. DevOps requires a cultural shift beyond simply implementing a new lineup of tools. Each department, technical or not, needs to understand the cultural shift behind DevOps. It’s one that emphasizes empathy and better collaboration. It’s more about people. DevOps emphasizes continuous change There’s no way around it — you will need to deal with more change and release tasks when integrating DevOps principles into your operations — the focus is placed heavily on accelerating deployment through development and operations integration, after all. This perception comes out of DevOps’ initial popularity among web app developers. It has been explained that most businesses will not face change that is so frequent, and do not need to worry about continuous change deployment just because they are supporting DevOps. DevOps does not equal “developers managing production” DevOps means development and operations teams working together collaboratively to put the operations requirements about stability, reliability, and performance into the development practices, while at the same time bringing development into the management of the production environment (e.g. by putting them on call, or by leveraging their development skills to help automate key processes). It doesn’t mean a return to the laissez-faire “anything goes” model, where developers have unfettered access to the production environment 24/7 and can change things as and when they like. DevOps eliminates traditional IT roles If, in your DevOps environment, your developers suddenly need to be good system admins, change managers and database analysts, something went wrong. DevOps as a movement that eliminates traditional IT roles will put too much strain on workers. The goal is to break down collaboration barriers, not ask your developers to do everything. Specialized skills play a key role in support effective operations, and traditional roles are valuable in DevOps.  About the Author  Hari Vignesh Jayapalan is a Google Certified Android app developer, IDF Certified UI & UX Professional, street magician, fitness freak, technology enthusiast, and wannabe entrepreneur. He can be found on Twitter @HariofSpades. 
Read more
  • 0
  • 0
  • 3587

article-image-why-choose-ansible-for-your-automation-and-configuration-management-needs
Savia Lobo
03 Jul 2018
4 min read
Save for later

Why choose Ansible for your automation and configuration management needs?

Savia Lobo
03 Jul 2018
4 min read
Off late, organizations are moving towards getting their systems automated. The benefits are many. Firstly, it saves off a huge chunk of time and secondly saves investments in human resources for simple tasks such as updates and so on. Few years back, Chef and Puppet were the two popular names when asked about tools for software automation. Over the years, these have got a strong rival which has surpassed them and now sits as one of the famous tools for software automation. Ansible is the one! Ansible is an open source tool for IT configuration management, deployment, and orchestration. It is perhaps the definitive configuration management tool. Chef and Puppet may have got there first, but its rise over the last couple of years is largely down to its impressive automation capabilities. And with the demands on operations engineers and sysadmins facing constant time pressures, the need to automate isn’t “nice to have”, but a necessity. Its tagline is “allowing smart people to do smart things.” It’s hard to argue that any software should aim to do much more than that. Ansible’s rise in popularity Ansible, originated in the year 2013, is a leader in IT automation and DevOps. It was bought by Red Hat in the year 2015 to achieve their goal of creating frictionless IT. The reason Red Hat acquired Ansible was its simplicity and versatility. It got the second mover advantage of entering the DevOps world after Puppet. It meant that it can orchestrate multi-tier applications in the cloud. This results in server uptime by implementing an ‘Immutable server architecture’ for deploying, creating, delete, or migrate servers across different clouds. For those starting afresh, it is easy to write, maintain automation workflows and gives them a plethora of modules which make it easy for newbies to get started. Benefits Red Hat and its community Ansible complements Red Hat’s popular cloud products, OpenStack and OpenShift. Red Hat proved to be a complex yet safe open source software for enterprises. However, it was not easy-to-use. Due to this many developers started migrating to other cloud services for easy and simple deployment options. By adopting Ansible, Red Hat finally provided an easy option to automate and modernize theri IT solutions. Customers can now focus on automating various baseline tasks. It also aids Red Hat to refresh its traditional playbooks; it allows enterprises to use IT services and infrastructure together with the help of Ansible’s YAML. The most prominent benefit of using Ansible for both enterprises and individuals is that it is agentless. It achieves this by leveraging SSH and Windows remote Management. Both these approaches reuse connections and use minimal network traffic. The approach also has added security benefits and improves both client and central management server resource utilization. Thus, the user does not have to worry about the network or server management, and can focus on other priority tasks. What can you use it for? Easy Configurations: Ansible provides developers with easy to understand configurations; understood by both humans and machines. It also includes many modules and user-built roles. Thus, one need not start building from scratch. Application lifecycle management: One can be rest assured about their application development lifecycle with Ansible. Here, it is used for defining the application and Red Hat Ansible Tower is used for managing the entire deployment process. Continuous Delivery: Manage your business with the help of Ansible push-based architecture, which allows a more sturdy control over all the required operations. Orchestration of server configuration in batches makes it easy to roll out changes across the environment. Security and Compliance: While security policies are defined in Ansible, one can choose to integrate the process of scanning and solving issues across the site into other automated processes. Scanning of jobs and system tracking ensures that systems do not deviate from the parameters assigned. Additionally, Ansible Tower provides a secure storage for machine credentials and RBAC (role-based access control). Orchestration: It brings in a high amount of discipline and order within the environment. This ensures all application pieces work in unison and are easily manageable; despite the complexity of the said applications. Though it is popular as the IT automation tool, many organizations use it in combination with Chef and Puppet. This is because it may have scaling issues and lacks in performance for larger deployments. Don’t let that stop you from trying Ansible; it is most loved by DevOps as it is written in Python and thus it is easy to learn. Moreover, it offers a credible support and an agentless architecture, which makes it easy to control servers and much more within an application development environment. An In-depth Look at Ansible Plugins Mastering Ansible – Protecting Your Secrets with Ansible Zefflin Systems unveils ServiceNow Plugin for Red Hat Ansible 2.0
Read more
  • 0
  • 0
  • 3466