Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Data Structures and Algorithms with Rust

You're reading from   Hands-On Data Structures and Algorithms with Rust Learn programming techniques to build effective, maintainable, and readable code in Rust 2018

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788995528
Length 316 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Claus Matzinger Claus Matzinger
Author Profile Icon Claus Matzinger
Claus Matzinger
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Hello Rust! FREE CHAPTER 2. Cargo and Crates 3. Storing Efficiently 4. Lists, Lists, and More Lists 5. Robust Trees 6. Exploring Maps and Sets 7. Collections in Rust 8. Algorithm Evaluation 9. Ordering Things 10. Finding Stuff 11. Random and Combinatorial 12. Algorithms of the Standard Library 13. Assessments 14. Other Books You May Enjoy

Borrowing and ownership

Rust is famous for its memory management model, which replaces runtime garbage collection with compile-time checks for memory safety. The reason why Rust can work without a garbage collector and still free the programmer from error-prone memory management is simple (but not easy): borrowing and ownership.

While the particulars are quite complex, the high-level view is that the compiler inserts any "provide x amounts of memory" and "remove x amounts of memory" (somewhat like malloc() and free() for C programmers) statements for the developer. Yet how can it do that?

The rules of ownership are as follows:
  • The owner of a value is a variable
  • At any time, only a single owner is allowed
  • The value is lost once the owner goes out of scope

This is where Rust's declarative syntax comes into play. By declaring a variable, the compiler knows—at compile time—that a certain amount of memory needs to be reserved. The lifetime is clearly defined too, from the beginning to end of a block or function, or as long as the struct instance lives. If the size of this variable is known at compile time, the compiler can provide exactly the necessary amount of memory to the function for the time required. To illustrate, let's consider this snippet, where two variables are allocated and removed in a deterministic order:

fn my_func() {
// the compiler allocates memory for x
let x = LargeObject::new();
x.do_some_computation();
// allocate memory for y
let y = call_another_func();
if y > 10 {
do_more_things();
}
} // deallocate (drop) x, y

Is this not what every other compiler does? The answer is yes—and no. At compile time, the "provide x amounts of memory" part is fairly simple; the tricky part is keeping track of how much is still in use when references can be passed around freely. If, during the course of a function, a particular local reference becomes invalid, a static code analysis will tell the compiler about the lifetime of the value behind the reference. However, what if a thread changes that value at an unknown time during the function's execution?

At compile time, this is impossible to know, which is why many languages do these checks at runtime using a garbage collector. Rust forgoes this, with two primary strategies:

  • Every variable is owned by exactly one scope at any time
  • Therefore, the developer is forced to pass ownership as required

Especially when working with scopes, the nature of stack variables comes in handy. There are two areas of memory, stack and heap, and, similar to other languages, the developer uses types to decide whether to allocate heap (Box, Rc, and so on) or stack memory.

Stack memory is usually short-lived and smaller, and operates in a first-in, last-out manner. Consequently, a variable's size has to be known before it is put on the stack:

Heap memory is different; it's a large portion of the memory, which makes it easy to allocate more whenever needed. There is no ordering, and memory is accessed by using an addresses. Since the pointer to an address on the heap has a known size at compile time, it fits nicely on the stack:

Stack variables are typically passed by value in other languages, which means that the entire value is copied and placed into the stack frame of the function. Rust does the same, but it also invalidates further use of that variable in the—now parent—scope. Ownership moves into the new scope and can only be transferred back as a return value. When trying to compile this snippet, the compiler will complain:

fn my_function() {
let x = 10;
do_something(x); // ownership is moved here
let y = x; // x is now invalid!
}

Borrowing is similar but, instead of copying the entire value, a reference to the original value is moved into the new scope. Just like in real life, the value continues to be owned by the original scope; scopes with a reference are just allowed to use it as it was provided. Of course, this comes with drawbacks for mutability, and some functions will require ownership for technical and semantic reasons, but it also has advantages such as a smaller memory footprint.

These are the rules of borrowing:
  • Owners can have immutable or mutable references, but not both
  • There can be multiple immutable references, but only one mutable reference
  • References cannot be invalid

By changing the previous snippet to borrow the variable to do_something() (assuming this is allowed, of course), the compiler will be happy:

fn my_function() {
let x = 10;
do_something(&x); // pass a reference to x
let y = x; // x is still valid!
}

Borrowed variables rely heavily on lifetimes. The most basic lifetime is the scope it was created in. However, if a reference should go into a struct field, how can the compiler know that the underlying value has not been invalidated? The answer is explicit lifetimes!

You have been reading a chapter from
Hands-On Data Structures and Algorithms with Rust
Published in: Jan 2019
Publisher: Packt
ISBN-13: 9781788995528
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime
Visually different images