Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
 R. Nicolas R. Nicolas
Author Profile Icon R. Nicolas
R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Scala for Machine Learning
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started FREE CHAPTER 2. Hello World! 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks Basic Concepts Index

Support vector regression


Most of the applications using support vector machines are related to classification. However, the same technique can be applied to regression problems. Luckily, as with classification, LIBSVM supports two formulations for support vector regression:

  • ∈-VR (sometimes called C-SVR)

  • υ-SVR

For the sake of consistency with the two previous cases, the following test uses the ∈ (or C) formulation of the support vector regression.

An overview

The SVR introduces the concept of error insensitive zone and insensitive error, ε. The insensitive zone defines a range of values around the predictive values, y(x). The penalization component C does not affect the data point {xi,yi} that belongs to the insensitive zone [8:14].

The following diagram illustrates the concept of an error insensitive zone using a single variable feature x and an output y. In the case of a single variable feature, the error insensitive zone is a band of width (ε is known as the insensitive error). The insensitive...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images