Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Regression Analysis with R

You're reading from   Regression Analysis with R Design and develop statistical nodes to identify unique relationships within data at scale

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781788627306
Length 422 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Title Page
Packt Upsell
Contributors
Preface
1. Getting Started with Regression FREE CHAPTER 2. Basic Concepts – Simple Linear Regression 3. More Than Just One Predictor – MLR 4. When the Response Falls into Two Categories – Logistic Regression 5. Data Preparation Using R Tools 6. Avoiding Overfitting Problems - Achieving Generalization 7. Going Further with Regression Models 8. Beyond Linearity – When Curving Is Much Better 9. Regression Analysis in Practice 1. Other Books You May Enjoy Index

Dimensionality reduction


Dimensionality reduction is the process of converting a set of data with many variables into data with lesser dimensions while ensuring similar information. The aim is to reduce the number of dimensions in a dataset through either feature selection or feature extraction without significant loss of details. Feature selection approaches try to find a subset of the original variables. Feature extraction reduces the dimensionality of the data by transforming it into new features.

Principal Component Analysis

Principal Component Analysis (PCA) generates a new set of variables, among them uncorrelated, called principal components; each main component is a linear combination of the original variables. All principal components are orthogonal to each other, so there is no redundant information. The principal components as a whole, constitute an orthogonal basis for the data space. The goal of PCA is to explain the maximum amount of variance with the fewest number of principal...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images